本节介绍SAE产品的部署方式,分为一键部署和手动部署。一键部署通过阿里云ROS平台快速拉起高可用方案所需资源,适合快速搭建环境;手动部署则需进入SAE控制台进行详细配置,适用于自定义应用部署。两者均支持多种部署方式,如源码仓库、镜像等,并提供灵活的资源配置选项。部署完成后需及时删除资源以避免费用产生。SAE支持HTTP和HTTPS协议,适合长时间运行的微服务和Web应用,而FC(函数计算)更适合短时、高并发的任务处理。
如何充分发挥 SQL 能力,是本篇文章的主题。本文尝试独辟蹊径,强调通过灵活的、发散性的数据处理思维,就可以用最基础的语法,解决复杂的数据场景。
基于 Stable Diffusion Serverless API 解决方案搭建 AI 文字生成应用,支持并发出图。
本文介绍了Serverless的发展历程及SAE(Serverless Application Engine)产品。首先,回顾了云计算从物理机、虚拟机到容器化再到Serverless的演进过程,并解释了Serverless的核心特点:无需管理底层资源、自动弹性伸缩、聚焦业务价值。接着,详细介绍了SAE的功能与优势,包括简化部署流程、支持多种弹性策略和提供丰富的运维工具。SAE的收费模式主要基于CPU和内存使用量,辅以请求数和流量计费,用户可以选择按量付费或预付费资源包。最后,通过极氪汽车、南瓜电影、视野数科和SKG等实际案例,展示了SAE在不同行业的应用效果。
Anthropic推出Agent Skills协议,通过模块化技能封装提升大模型智能体的专业能力。ModelScope开源项目MS-Agent已实现该协议,支持技能的动态加载、自主执行与安全沙箱运行,推动智能体能力的可组合与可扩展发展。
本文介绍了一种基于LLM的“自我编程”Agent系统,通过代码驱动实现复杂逻辑。该Agent以Python为执行引擎,结合Py4j实现Java与Python交互,支持多工具调用、记忆分层与上下文工程,具备感知、认知、表达、自我评估等能力模块,目标是打造可进化的“1.5线”智能助手。
推荐系统作为互联网时代连接用户与信息的核心技术,正在经历从传统协同过滤向多模态智能推荐的重要变革。随着深度学习技术的快速发展,特别是大语言模型和多模态预训练技术的成熟,推荐系统开始从单纯依赖用户行为ID特征转向充分利用商品图像、文本描述等丰富内容信息的新范式。