今天,来自 Qwen1.5 开源家族的新成员,代码专家模型 CodeQwen1.5开源!CodeQwen1.5 基于 Qwen 语言模型初始化,拥有 7B 参数的模型,其拥有 GQA 架构,经过了 ~3T tokens 代码相关的数据进行预训练,共计支持 92 种编程语言、且最长支持 64K 的上下文输入。效果方面,CodeQwen1.5 展现出了优秀的代码生成、长序列建模、代码修改、SQL 能力等,该模型可以大大提高开发人员的工作效率,并在不同的技术环境中简化软件开发工作流程。
从花果山的灵石出世,到取经路上的九九八十一难,再到大闹天宫的惊心动魄……这些耳熟能详的西游场景,如今都能通过 Flux 模型,以超乎想象的细节和真实感呈现在你眼前。本次实验在函数计算中内置的 flux.1-dev-fp8 大模型,搭配 Lora 模型,无需复杂的配置,一键部署,你就能成为这场视觉盛宴的创造者。
年会中的抽奖环节不可或缺,但每年为了选择合适的抽奖小程序,团队往往需要投入大量时间和精力。然而,抽奖结束后,参与者通常只记得自己是否中奖,其他细节多被遗忘。在 AI 技术日益成熟的今天,如何打造一个既高效又有技术含量的抽奖应用呢?今天,就让我们跟随通义灵码,仅用 5 分钟现场手撕一个抽奖应用吧!
本次分享,主题是利用通义灵码提升前端研发效率。分享内容主要包括以下几部分:首先,我将从前端开发的角度介绍对通义灵码的基本认识;其次,我将展示通义灵码在日常研发中的应用案例;然后,我将通过实例说明,良好的设计能够显著提升通义灵码的效果。在第四个部分,我将介绍通义灵码的企业知识库以及如何利用 RAG 构建团队智能研发助手。最后,我将总结本次分享并展望未来方向。
在 AI 与云原生融合的趋势下,开发者面临模型协同与云端扩展的挑战。MCP(模型上下文协议)提供统一的交互规范,简化模型集成与服务开发。Function AI 支持 MCP 代码一键上云,提供绑定代码仓库、OSS 上传、本地交付物部署及镜像部署等多种构建方式,助力开发者高效部署智能服务,实现快速迭代与云端协同。
LISA是Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning的简写,由UIUC联合LMFlow团队于近期提出的一项LLM微调技术,可实现把全参训练的显存使用降低到之前的三分之一左右,而使用的技术方法却是非常简单。
本次案例主要分享森马集团面对多年自建的多套数仓产品体系,通过阿里云MaxCompute+Hologres+DataWorks统一数仓平台,保障数据生产稳定性与数据质量,减少ETL链路及计算时间,每年数仓整体费用从300多万降到180万。
本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。
本文介绍了MCP(模型上下文协议)及其在AI领域的应用前景。MCP由Anthropic公司推出,通过标准化通信协议实现AI与数据源间的安全隔离,解决了传统AI应用中的数据隐私和安全问题。文章探讨了从LLM到MCP的进化过程,并分析了其面临的挑战,如算力不足和开放性需求。Serverless技术被提出作为解决这些问题的方案,提供弹性算力和支持安全沙箱环境。最后,文章提供了如何一键部署热门MCP Server的教程,帮助开发者快速上手并体验该协议的实际应用效果。