官方博客-第6页-阿里云开发者社区

  • 2024-12-24
    1622

    探索大型语言模型LLM推理全阶段的JSON格式输出限制方法

    本篇文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。

    1,622
  • 2025-04-10
    794

    AI Infra之模型显存管理分析

    本文围绕某线上客户部署DeepSeek-R1满血版模型时进行多次压测后,发现显存占用一直上升,从未下降的现象,记录了排查过程。

    794
  • 2025-05-22
    1735

    自媒体创作场景实践|通义千问3 + MCP=一切皆有可能

    本文介绍了通过MCP(Model Context Protocol)结合通义千问大模型实现跨平台、跨服务的自动化任务处理方案。使用Qwen3-235B-A22B模型,配合ComfyUI生成图像,并通过小红书等社交媒体发布内容,展示了如何打破AI云服务的数据孤岛。具体实践包括接入FileSystem、ComfyUI和第三方媒体Server,完成从本地文件读取到生成图像再到发布的全流程。 方案优势在于高可扩展性和易用性,但也存在大模型智能化不足、MCP Server开发难度较大及安全风险等问题。未来需进一步提升模型能力、丰富应用场景并解决安全挑战,推动MCP在更多领域落地。

    1,735
  • 2024-08-16
    16637

    RAG效果优化:高质量文档解析详解

    本文介绍了如何通过高质量的文档解析提升RAG系统整体的效果。

  • 2024-09-04
    2675

    【算法精讲系列】MGTE系列模型,RAG实施中的重要模型

    检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。

    2,675
  • 2025-04-01
    3657

    RAG 调优指南:Spring AI Alibaba 模块化 RAG 原理与使用

    通过遵循以上最佳实践,可以构建一个高效、可靠的 RAG 系统,为用户提供准确和专业的回答。这些实践涵盖了从文档处理到系统配置的各个方面,能够帮助开发者构建更好的 RAG 应用。

    3,657
  • 2024-08-22
    1563

    阿里云百炼应用实践系列-10分钟在企业微信中集成一个 AI 助手

    在阿里云平台上,您只需十分钟,无需任何编码,即可在企业微信上为您的组织集成一个具备大模型能力的AI助手。此助手可24小时响应用户咨询,解答各类问题,尤其擅长处理私域问题,从而成为您企业的专属助手,有效提升用户体验及业务竞争力。

    1,563
  • 2025-01-08
    1863

    阿里云百炼xWaytoAGI共学课 DAY2 - 更好用的文本知识库应用跟学,快速上手阿里云百炼

    本课程是阿里云百炼平台的第二天课程内容,旨在帮助用户了解如何通过阿里云百炼构建和发布自己的AI应用。介绍了如何利用大模型和智能体应用来创建具备强大语言理解和生成能力的AI助手,并通过不同的渠道(如网站、钉钉、微信公众号等)发布这些应用。

    1,863
  • 2025-11-17
    477

    阿里云 AI 搜索 DeepSearch 技术实践

    阿里云OpenSearch LLM版推出DeepSearch技术,实现从RAG 1.0到RAG 2.0的升级。基于多智能体协同架构,支持复杂推理、多源检索与深度搜索,显著提升问答准确率,助力企业智能化升级。

  • 1
    ...
    5
    6
    7
    ...
    32
    到第
    6/32