人工智能领域中的验证码识别与 Serverless 架构碰撞会有哪些火花呢?本文将会通过 Serverless 架构,通过卷积神经网络(CNN)算法,实现一个验证码识别功能。
本文介绍基于函数计算实现的异步任务执行框架(编程语言:Python3),把跟阿里云资源开通相关的API封装到一个独立的模块,提供标准的API跟企业内部在用的ITSM或OA进行集成,降低客户对接API门槛,更快上阿里云。
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
本文将AI项目与Serverless架构进行结合,在Serverless架构下用20行Python代码搞定图像分类和预测。
本文聚焦 LoongSuite 生态核心组件 LoongCollector,深度解析 LoongCollector 在智算服务中的技术突破,涵盖多租户观测隔离、GPU 集群性能追踪及事件驱动型数据管道设计,通过零侵入采集、智能预处理与自适应扩缩容机制,构建面向云原生 AI 场景的全栈可观测性基础设施,重新定义高并发、强异构环境下的可观测性能力边界。