Arm 架构的服务器通常具备低功耗的特性,能带来更优异的能效比。相比于传统的 x86 架构服务器,Arm 服务器在相同功耗下能够提供更高的性能。这对于大模型推理任务来说尤为重要,因为大模型通常需要大量的计算资源,而能效比高的 Arm 架构服务器可以提供更好的性能和效率。
通过一系列优化,我们将 Paimon x Spark 在 TpcDS 上的性能提高了37+%,已基本和 Parquet x Spark 持平,本文对其中的关键优化点进行了详细介绍。
XTuner和魔搭社区(SWIFT)合作引入了一项长序列文本训练技术,该技术能够在多GPU环境中将长序列文本数据分割并分配给不同GPU,从而减少每个GPU上的显存占用。通过这种方式,训练超大规模模型时可以处理更长的序列,提高训练效率。魔搭社区的SWIFT框架已经集成了这一技术,支持多种大模型和数据集的训练。此外,SWIFT还提供了一个用户友好的界面,方便用户进行训练和部署,并且支持评估功能。
介绍SLS在可观测数据融合分析的一系列技术升级,融合Trace、全栈监控、Continuous Profiling、移动端监控等功能,帮助大家更快速地构筑全栈、自动化的观测能力。
prompt工程不需要复杂的编程知识,人人都可以使用prompt工程成为AI大师。本文只探讨prompt工程,不涉及模型训练等内容。只讨论文本生成,不涉及图像等领域。
本文介绍的实现方式属于应用级限制,应用级限流方式只是单应用内的请求限流,不能进行全局限流。要保证系统的抗压能力,限流是一个必不可少的环节,虽然可能会造成某些用户的请求被丢弃,但相比于突发流量造成的系统宕机来说,这些损失一般都在可以接受的范围之内。
基于单个开源小模型的工具调用Agent,由于模型容量和预训练能力获取的限制,无法在推理和规划、工具调用、回复生成等任务上同时获得比肩大模型等性能。
本教程将带领大家免费领取阿里云PAI-EAS的免费试用资源,并且带领大家在 ComfyUI 环境下使用 SVD的模型,根据任何图片生成一个小短视频。