官方博客-第29页-阿里云开发者社区

  • 2024-05-15
    1191

    全景剖析阿里云容器网络数据链路(五)—— Terway ENI-Trunking

    本文是[全景剖析容器网络数据链路]第五部分部分,主要介绍Kubernetes Terway ENI-Trunking模式下,数据面链路的转转发链路。

    1,191
  • 2024-05-15
    543

    多账号共享一套ACR方案

    一家多业务组织的客户来说往往会有多个云账号,分别部署各个业务线的容器服务。但集团可能想使用一套统一的容器镜像仓库(ACR),就会面临多账号内多个ACK共享一套ACR了。那如何合理规划好ACR实例上的命名空间,打通各个业务ACK集群与ACR的网络,包括如何精细化授权,都是客户需要考虑的。

    543
  • 2024-05-15
    578

    基于ASK+TFJob快速完成分布式Tensorflow训练任务

    本文介绍如何使用TFJob在ASK+ECI场景下,快速完成基于GPU的TensorFlow分布式训练任务。

    578
  • 2024-05-15
    740

    图像检索解决方案

    针对图像检索业务场景,PAI提供了端到端的相似图像匹配和图像检索解决方案。本文介绍如何基于未标注的数据构建图像自监督模型,助力您快速搭建相似图像匹配和图像检索业务系统,进而实现以图搜图。

    740
  • 2024-05-15
    836

    安全防御四部曲---检测实践方案 (多产品结合)

    本次方案主要是针对阿里云国际站客户,企业在实际使用阿里云的过程中如何做好运维检测的一些多产品结合的方案介绍。 本篇文章的重点会放在检测(Detection)部分,会具体介绍涉及使用产品配置,FAQ等等,同时对整体的理论框架进行简单的介绍,帮助大家更好理解本部分在运维工作中的分属情况,更好的建立整体性的概念。

    836
  • 2024-05-15
    779

    阿里云国际站ATT&CK 多产品安全实践

    本文根据MITRE ATT&CK的Cloud Matrix攻防知识图谱的·解读,介绍如何在阿里云国际站上通过多产品的组合实践,加强您的云安全防护能力,更好地达到安全运营的效果。

    779
  • 【深度】企业 AI 落地实践(四):如何构建端到端的 AI 应用观测体系

    本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。

  • 1
    ...
    26
    27
    28
    29
    30
    到第
    29/30