本文主要介绍了解析云原生 AI 所遇到的技术挑战和应对方案,随后介绍云原生 AI 领域的关键技术与架构细节,最后分享我们在 ACK 的相关经验及工程实践。
本文是[全景剖析容器网络数据链路]第四部分部分,主要介绍Kubernetes Terway EBPF+IPVLAN模式下,数据面链路的转转发链路。
本文主要介绍通过KMS密钥管理服务产生的密钥对敏感的AK等数据进行加密之后可以有效解决泄漏带来的安全风险问题,其次通过KMS凭据托管的能力直接将MSE的主AK进行有效管理,保障全链路无AK的业务体验,真正做到安全、可控。
针对Springboot里面使用开源工具使用加解密,替换成阿里云KMS产品进行加解密;
安全事件和事件管理(security information and event management,SIEM)通过对来自各种数据源安全事件的收集和分析,来实现威胁检测、安全事件管理和合规性检测。SIEM是在安全信息管理(SIM)——收集、分析并报告日志数据,与安全事件管理(SEM)——实时分析日志和事件数据以提供威胁监视、事件关联和事件响应的基础上发展而来的。本文为您介绍如何基于SLS平台与日志审计构建Cloud SIEM方案。
本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。