官方博客-第6页-阿里云开发者社区

  • 2024-05-15
    299

    数据库等值查询与统计信息

    简介: 统计信息是为优化器的 cost 估算提供数据支撑,其中很重要的一点需求便是等值查询(EQUALS, IN 等) 场景下的基数估算。

  • 60941

    突破大表瓶颈|小鹏汽车使用PolarDB实现百亿级表高频更新和实时分析

    PolarDB已经成为小鹏汽车应对TB级别大表标注、分析查询的"利器"。

  • 1190

    拥抱Data+AI|解码Data+AI助力游戏日志智能分析

    「拥抱Data+AI」系列第2篇:阿里云DMS+AnalyticDB助力游戏日志数据分析与预测

  • 2025-03-21
    1313

    AI 推理场景的痛点和解决方案

    一个典型的推理场景面临的问题可以概括为限流、负载均衡、异步化、数据管理、索引增强 5 个场景。通过云数据库 Tair 丰富的数据结构可以支撑这些场景,解决相关问题,本文我们会针对每个场景逐一说明。

    1,313
  • 2024-05-15
    61858

    走进RDS之MySQL内存分配与管理(中)

    MySQL内存分配与管理总体上分为上中下三篇介绍,本篇为中篇,主要介绍 InnoDB 的内存构成和使用,代码版本主要基于8.0.25。

    61,858
  • 2024-08-06
    1496

    AnalyticDB for MySQL:AI时代实时数据分析的最佳选择

    阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比

    1,496
  • 1667

    拥抱Data+AI|“全球第一”雅迪如何实现智能营销?DMS+PolarDB注入数据新活力

    针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。

  • 2025-11-17
    239

    【跨国数仓迁移最佳实践6】MaxCompute SQL语法及函数功能增强,10万条SQL转写顺利迁移

    本系列文章将围绕东南亚头部科技集团的真实迁移历程展开,逐步拆解 BigQuery 迁移至 MaxCompute 过程中的关键挑战与技术创新。本篇为第六篇,MaxCompute SQL语法及函数功能增强。 注:客户背景为东南亚头部科技集团,文中用 GoTerra 表示。

  • 1
    ...
    5
    6
    7
    ...
    18
    到第
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    6/18