本文介绍了OLAP分析在大数据分析中的位置,分析并介绍目前大数据OLAP遇到的分析性能、资源隔离、高可用、弹性扩缩容等核心问题,解析阿里云Hologres是如何解决极致性能、弹性、业务永续、性价比等核心刚需的最佳实践,介绍阿里云Hologres弹性计算组在弹性计算、资源隔离上的探索和创新。
Arm 架构的服务器通常具备低功耗的特性,能带来更优异的能效比。相比于传统的 x86 架构服务器,Arm 服务器在相同功耗下能够提供更高的性能。这对于大模型推理任务来说尤为重要,因为大模型通常需要大量的计算资源,而能效比高的 Arm 架构服务器可以提供更好的性能和效率。
本文阐述了阿里云表格存储(Tablestore)如何通过其向量检索服务应对大规模数据检索的需求,尤其是在成本、规模和召回率这三个关键挑战方面。
在本文中,作者介绍了 Lingma SWE-GPT,一款专为解决复杂软件改进任务设计的开源大型语言模型系列。
海尔与阿里云的合作不仅推动了自身的技术革新和服务升级,更为整个智能家居行业树立了典范。在未来的发展道路上,双方将继续携手共进,共同迎接 AI 时代的到来,为全球用户创造更加美好的智慧生活。
本文对海外泼天流量现状做了快速整理,旨在抛砖引玉,促进国内企业在出海过程中,交流如何构建全球化技术架构的落地经验,相信会有越来越多资深人士分享更深层次的实践。
vLLM 是一种便捷的大型语言模型(LLM)推理服务,旨在简化个人和企业用户对复杂模型的使用。通过 vLLM,用户可以轻松发起推理请求,享受高效、稳定的 LLM 服务。针对大规模部署 vLLM 的挑战,如大模型参数量、高效推理能力和上下文理解等,阿里云函数计算(FC)提供了 GPU 预留实例闲置计费功能,优化了性能、成本和稳定性之间的平衡。此外,FC 支持简便的部署流程和多种应用集成方式,帮助企业快速上线并管理 vLLM 服务。总结来说,vLLM 结合 FC 的解决方案为企业提供了强大的技术支持和灵活的部署选项,满足不同业务需求。
一个典型的推理场景面临的问题可以概括为限流、负载均衡、异步化、数据管理、索引增强 5 个场景。通过云数据库 Tair 丰富的数据结构可以支撑这些场景,解决相关问题,本文我们会针对每个场景逐一说明。