本文核心观点: • 基于大模型的 AI 原生应用将越来越多,容器和微服务为代表的云原生技术将加速渗透传统业务。 • API 是 AI 原生应用的一等公民,并引入了更多流量,催生企业新的生命力和想象空间。 • AI 原生应用对网关的需求超越了传统的路由和负载均衡功能,承载了更大的 AI 工程化使命。 • AI Infra 的一致性架构至关重要,API 网关、消息队列、可观测是 AI Infra 的重要组成。
基于 IaC 的理念,通过定义一个模板,使用 ROS 提供的 Terraform 托管服务进行自动化部署,可以非常高效快捷地部署任意云资源和应用(比如 ChatTTS 服务)。相比于手动部署或者通过 API、SDK 的部署方式,有着高效、稳定等诸多优势,也是服务上云的最佳实践。
阿里云OOS提供了定时升级Redis实例临时带宽的功能,以应对数据驱动业务中的流量高峰。这个功能允许用户根据预测的业务负载,在特定日期和时间自动增加Redis实例的带宽,确保服务性能和稳定性。在高流量事件结束后,带宽会自动恢复到原设置,节省成本。 此功能适用于电商平台促销、大型游戏更新等场景,确保在流量高峰期间的系统稳定运行。
阿里云存储产品高级解决方案架构师欧阳雁(乐忱)分享了中国企业在全闪存高端存储市场的快速增长,指出AI大模型的发展推动了企业级存储市场。去年,高端企业级存储闪存占比约为25%,相较于欧美50%的比例,显示出中国在AI领域的巨大增长潜力。演讲涵盖AI业务流程,包括数据预处理、训练和推理的痛点,以及针对这些环节的存储解决方案,强调了稳定、高性能和生命周期管理的重要性。此外,还介绍了数据预处理的全球加速和弹性临时盘技术,训练阶段的高性能存储架构,推理场景的加速器和AI Agent的应用,以及应对大数据业务的存储考量,如对象存储、闪电立方和冷归档存储产品。
监控运维是一个体系化的工作,完善这个体系非一日之功。但是我们的业务不可一日无监控“裸奔”,在阿里云怎么样快速低成本的建立第一道资源监控的护城河?开箱即用的云监控,将会是你进入阿里云的第一个可靠的小伙伴。
本文介绍了如何使用通义万相AIGC技术和阿里云的计算和存储产品来搭建自己的AI绘画服务。首先,通过创建基础云产品资源和部署AI绘画服务的步骤来开始搭建服务。然后,介绍了模板的原理和内容,以及ROS编排引擎的作用。接下来,详细介绍了AI绘画服务的一键部署过程,包括定义参数、模板的编写和ROS的使用。最后,提到了应用运行环境的搭建和自定义应用页面的方法。通过ROS的自动化部署,用户可以方便快捷地拥有自己的AI绘画服务。
Flowise 是一个开源低代码平台,用于构建定制化的 LLM 流程和 AI 代理。阿里云的 Resource Orchestration Service (ROS) 提供了一键部署 Flowise 到 ECS 实例的方案。用户只需在 ROS 控制台配置模板参数,如可用区和实例类型,即可完成部署。部署后,从资源栈输出获取 Flowise 服务地址以开始使用。ROS 模板定义了 VPC、ECS 实例等资源,并通过 ROS 自动化部署,简化了云上资源和应用的管理。
阿里云消息队列 ApsaraMQ 始终围绕“高弹性低成本、更稳定更安全、智能化免运维”三大核心方向进行演进和拓展。在智能化免运维方面,通过 ApsaraMQ Copilot,为企业提供消息数据集成链路的健康管家,让消息服务走进智能化免运维的新时代。