官方博客-第26页-阿里云开发者社区

  • 2024-05-15
    140

    全面容器化之后,来电科技实现微服务治理

    MSE 服务治理帮助我们系统以很低的成本无侵入的方式快速实现了全链路灰度能力,进一步提升了我们系统的稳定性,让我们新需求的迭代上线更加地安心。-- 来电科技架构师 汤长征

    140
  • 2024-05-15
    364

    链路追踪(Tracing)其实很简单——链路成本进阶指南

    广义上的链路成本,既包含使用链路追踪产生的数据生成、采集、计算、存储、查询等额外资源开销,也包含链路系统接入、变更、维护、协作等人力运维成本。为了便于理解,本小节将聚焦在狭义上的链路追踪机器资源成本,人力成本将在下一小节(效率)进行介绍。

    364
  • 2024-05-15
    526

    安全防御四部曲-防护实践方案(多产品结合)

    本篇内容为防护(Protection),检测(Detection),恢复(Recovery),响应(Response)实践方案四部曲之一,主要介绍如何结合多产品使用在阿里云国际站做好防护(Protection)部分的安全。

    526
  • 2024-05-15
    285

    SQL Query Plan在Presto中的缓存设计与实现

    阿里云日志服务(SLS)提供一站式数据采集、加工、查询分析、告警、可视化与投递等功能,其中查询分析以简单统一的接口提供大规模数据的查询、计算和分析能力,深受用户喜爱。 目前,分析系统每天接收5+亿次SQL查询请求,在底层,分析系统基于Presto内核,其中Coordinator节点上负载尤其严重,其...

    285
  • 2024-05-15
    131

    实践教程之如何在PolarDB-X中优化慢SQL

    PolarDB-X 为了方便用户体验,提供了免费的实验环境,您可以在实验环境里体验 PolarDB-X 的安装部署和各种内核特性。除了免费的实验,PolarDB-X 也提供免费的视频课程,手把手教你玩转 PolarDB-X 分布式数据库。本期实验将指导您使用对 PolarDB-X 进行慢SQL优化。...

    131
  • 2024-05-15
    170

    日志服务 Scan 功能工作机制与最佳实践

    大数据快速增长的需要泛日志(Log/Trace/Metric)是大数据的重要组成,伴随着每一年业务峰值的新脉冲,日志数据量在快速增长。同时,业务数字化运营、软件可观测性等浪潮又在对日志的存储、计算提出更高的要求。从时效性角度看日志计算引擎:数仓覆盖 T + 1 日志处理,准实时系统(搜索引擎、OLA...

    170
  • 2024-05-15
    259

    长路漫漫, 从Blink-tree 到Bw-tree (上)

    在前面的文章 路在脚下, 从BTree 到Polar Index中提到, 我们已经将InnoDB 里面Btree 替换成Blink Tree, 高并发压力下, 在标准的TPCC 场景中最高能够有239%的性能提升, 然后我们对InnoDB 的file space模块也进行了优化, 在分配新pag...

    259
  • 2024-05-15
    188832

    Apache RocketMQ ACL 2.0 全新升级

    RocketMQ ACL 2.0 不管是在模型设计、可扩展性方面,还是安全性和性能方面都进行了全新的升级。旨在能够为用户提供精细化的访问控制,同时,简化权限的配置流程。欢迎大家尝试体验新版本,并应用在生产环境中。

    188,832
  • 2024-05-15
    214

    我们在数据库上做全链路灰度的方式

    本文介绍了MSE提供的数据库层面的灰度能力。

    214
  • 1
    ...
    25
    26
    27
    ...
    35
    到第
    26/35