本文详细记录了作者在处理HSF调用异常问题的过程中,从初步怀疑死锁到最终发现并解决活锁问题的全过程。
为了高效地发现、定位和解决预发问题,闲鱼团队研发了一套异常日志问题自动追踪-定位-分发机制。这套机制通过自动化手段,实现了异常日志的定时扫描、精准定位和自动分发,显著降低了开发和测试的成本,提高了问题解决的效率。
随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。
在 iLogtail 开源两周年这一里程碑时刻,我们邀请到了两位社区 Committer 进行分享,揭秘这些开发者如何在日常工作中与 iLogtail 结缘,又如何在业余时间里为项目添砖加瓦,推动其不断向前发展~
在 Data + AI 时代,随着大数据分析和 AI/ML 工作负载的进一步融合,对象存储 OSS 作为面向 AI 时代的数据基础设施,迎来了新的挑战与创新机遇。本话题我们将会介绍对象存储的能力创新,深度解读对象存储在实现稳定、安全、高性能和低成本背后的技术进展,并展望未来 AI 驱动趋势下的技术发展方向。
iLogtail 作为日志、时序数据采集器,在 2.0 版本中,全面支持了 SPL 。本文对处理插件进行了梳理,介绍了如何编写 SPL 语句,从插件处理模式迁移到 2.0 版本的 SPL 处理模式,帮助用户实现更加灵活的端上数据处理。
本文为 iLogtail 开源两周年的实践案例分享,讨论了 iLogtail 作为日志采集工具的优势,包括它在性能上超越 Filebeat 的能力,并通过一系列优化解决了在生产环境中替换 Filebeat 和 Logstash 时遇到的挑战。