阿里云OOS提供了定时升级Redis实例临时带宽的功能,以应对数据驱动业务中的流量高峰。这个功能允许用户根据预测的业务负载,在特定日期和时间自动增加Redis实例的带宽,确保服务性能和稳定性。在高流量事件结束后,带宽会自动恢复到原设置,节省成本。 此功能适用于电商平台促销、大型游戏更新等场景,确保在流量高峰期间的系统稳定运行。
阿里云存储产品高级解决方案架构师欧阳雁(乐忱)分享了中国企业在全闪存高端存储市场的快速增长,指出AI大模型的发展推动了企业级存储市场。去年,高端企业级存储闪存占比约为25%,相较于欧美50%的比例,显示出中国在AI领域的巨大增长潜力。演讲涵盖AI业务流程,包括数据预处理、训练和推理的痛点,以及针对这些环节的存储解决方案,强调了稳定、高性能和生命周期管理的重要性。此外,还介绍了数据预处理的全球加速和弹性临时盘技术,训练阶段的高性能存储架构,推理场景的加速器和AI Agent的应用,以及应对大数据业务的存储考量,如对象存储、闪电立方和冷归档存储产品。
日志数据格式可能是多样且复杂的,iLogtail 插件配置模式已经可以很好的支持复杂数据的处理。iLogtail2.0 又带来了 SPL 语法的重大支持,在日志处理场景下,可以通过多级管道对数据进行交互式、递进式的探索和处理,从配置交互和性能上,都有比较大的提升和优化。iLogtail2.0 已经在逐步灰度中,欢迎大家体验和使用。
本文简要讨论了使用流量泳道来实现全链路流量灰度管理的场景与方案,并回顾了阿里云服务网格 ASM 提供的严格与宽松两种模式的流量泳道、以及这两种模式各自的优势与挑战。接下来介绍了一种基于 OpenTelemetry 社区提出的 baggage 透传能力实现的无侵入式的宽松模式泳道,这种类型的流量泳道同时具有对业务代码侵入性低、同时保持宽松模式的灵活特性的特点。同时,我们还介绍了新的基于权重的流量引流策略,这种策略可以基于统一的流量匹配规则,将匹配到的流量以设定好的比例分发到不同的流量泳道。
iLogtail致力于打造覆盖Trace、Metrics 以及Logging 的可观测性的统一Agent,而对Kubernetes 语义的原生支持大大增强了Log在Kubernetes场景的采集体验。
目标读者数字化系统开发运维(DevOps)工程师、稳定性工程师(SRE)、可观测平台运维人员等。背景介绍日志的形式往往多种多样,如果只是简单的读入日志数据,将很难进行搜索、分析及可视化。将原始的日志数据解析为结构化的数据,将大幅提升数据的可用性,方便用户进行快捷的“字段-值”的查询和分析。最基础的解...
本文主要介绍如何使用CloudLens for SLS定位和解决iLogtail日常使用中的常见问题之一:日志时间解析错误问题。
Flink全托管产品(Flink Serverless)是一款基于Apache Flink构建的全托管产品,为您提供全托管一站式的实时计算服务,具有免运费、高增值、低成本等特性。本方案介绍如何将自建开源Flink集群的流式任务(包含Datastream、Table/SQL、PyFlink任务)迁移至阿里云实时计算全托管版。