本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。
本文基于MySQL 8.0.34版本的源代码,详细介绍了MySQL中统计信息的计算和更新机制。文章首先概述了`records_per_key`统计信息在代价估计和Join Reorder算法中的重要性,接着了InnoDB统计信息的存储和计算方法,包括表级和索引级的统计信息。文章还介绍了统计信息的采样算法,特别是重要性采样在减少估计方差中的应用。此外,文章讨论了统计信息的更新时机,包括手动更新和自动更新。最后,文章简要介绍了直方图和其它统计信息,如表在内存中的占比估计,并通过实例展示了如何使用optimizer trace来分析查询优化过程。希望本文能帮助读者更好地理解MySQL的优化器。
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
本文浅析了MySQL Join Reorder算法的流程,cost计算,剪枝算法等,希望通过本文能帮助大家了解MySQL优化器生成执行计划的具体流程。
PolarDB-X 分布式数据库,采用集中式和分布式一体化的架构,为了能够灵活应对混合负载业务,作为数据存储的 Data Node 节点采用了多种数据结构,其中使用行存的结构来提供在线事务处理能力,作为 100% 兼容 MySQL 生态的数据库,DN 在 InnoDB 的存储结构基础上,进行了深度优化,大幅提高了数据访问的效率。
本文从“空间”这一维度,聊一聊PolarDB-X在跨空间部署能力上的不断发展和延伸,以及在不同空间范围下的高可用和容灾能力,并着重介绍一下最新的产品能力——GDN(Global Database Network)。