作者一年前围绕设计模式与代码重构写了一篇《代码整洁之道 -- 告别码农,做一个有思想的程序员!》的文章。本文作为续篇,从测试角度谈程序员对软件质量的追求。
从 2008 年开始,我陆陆续续参与了多个 DevOps 系统的建设,如今,审视这些系统的建设初衷和它们的设计思路或遇到的问题,依然有不少借鉴意义。我会按照时间顺序,把每个 DevOps 系统的特点,诞生的背景,以及在当时所主要解决的问题做一个概要的介绍,同时,我们也会以今天的视角再次审视这些问题,来看下同样的问题,经过十几年的发展,解决方案上有哪些不同。
上海经证科技有限公司为有效推进软件项目管理和开发工作,选择了阿里云云效作为 DevOps 解决方案。通过云效,实现了从 0 开始,到现在近百个微服务、数百条流水线与应用交付的全面覆盖,有效支撑了敏捷开发流程。
PolarDB-X 分布式数据库,采用集中式和分布式一体化的架构,为了能够灵活应对混合负载业务,作为数据存储的 Data Node 节点采用了多种数据结构,其中使用行存的结构来提供在线事务处理能力,作为 100% 兼容 MySQL 生态的数据库,DN 在 InnoDB 的存储结构基础上,进行了深度优化,大幅提高了数据访问的效率。
本文从“空间”这一维度,聊一聊PolarDB-X在跨空间部署能力上的不断发展和延伸,以及在不同空间范围下的高可用和容灾能力,并着重介绍一下最新的产品能力——GDN(Global Database Network)。
数据库系统到底是怎么进行并发访问控制的?本文以 MySQL 8.0.35 代码为例,尝试对 MySQL 中的并发访问控制进行整体介绍。
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比