本文主要介绍异步任务处理系统中的数据分析,函数计算异步任务最佳实践-Kafka ETL,函数计算异步任务最佳实践-音视频处理等。
Dataphin v3.13引入了跨节点参数功能,允许任务间传递消息。输出节点(如SQL、Shell、Python任务)能输出参数,输入节点可以接收并使用这些参数。此功能解决了通过公共存储中转消息的复杂性和低效问题。应用场景包括:金融企业的币种转换,其中汇率任务(输出节点)提供汇率,转换任务(输入节点)使用该汇率;以及产品目录更新检查,通过跨节点参数控制是否需要执行数据导入任务。用户可以通过任务编辑器设置和传递跨节点参数,并在运维中进行补数据操作。
本文将AI项目与Serverless架构进行结合,在Serverless架构下用20行Python代码搞定图像分类和预测。
随着云计算的普及,越来越多的传统企业客户也在选择把IDC的业务系统搬到公共云上,实现更大的弹性、更强的灵活性、更高的性价比。但与泛互联网型企业的轻资产相比,传统企业的云下IT规模较大,有比较沉重历史包袱重,以及各种行业安全规范的约束,所以对于网络的规划设计、部署使用、运维管理都有自己的要求,仅仅具备云产品的初级使用能力已不能满足实际使用需求。企业级云上网络架构的重点是帮助企业用户更高效地搭建安全可靠的云上网络架构,本文主要针对企业客户在云上的南北向流量(访问internet/被internet用户访问)和东西向流量(企业内部VPC互访)的互访、安全、管理等多方面需求,利用CEN-TR(云企业网企业版)实现云上东西向+南北向流量安全和统一公网出口的最佳实践。
人工智能领域中的验证码识别与 Serverless 架构碰撞会有哪些火花呢?本文将会通过 Serverless 架构,通过卷积神经网络(CNN)算法,实现一个验证码识别功能。
提起CDN,大家想到的字眼可能是缓存、转发、调度,用来提升终端用户体验、保护源站IP、降低源站流量风险,同时可以将源站的应用功能卸载到边缘,进一步释放边缘算力满足业务需求。DCDN脱胎于CDN,面向动态元素,通过智能路由、协议优化、压缩传输等手段,将转发场景的性能提到极限,广泛应用于电商、游戏、政企等行业。在互联网蓬勃发展,传统企业寻求数字化转型机会的今天,DCDN作为流量的入口,搭配灵活易扩展的“高级条件”及“EdgeScript”,可以通过流量转发这一技术手段,实现客户上云的“安全灰度”。
DataphinV3.14支持传统数据库调用,带来全新高效研发体验,及时全面的数据保护、自定义监控和审批让数据治理更灵活自由。