开发者社区 > ModelScope模型即服务 > 正文

modelscope模型训练完之后,怎么使用的是T5?

iic/nlp_mt5_zero-shot-augment_chinese-base modelscope模型训练完之后,怎么使用的是T5?

展开
收起
小小爱吃香菜 2024-03-18 20:32:02 54 0
3 条回答
写回答
取消 提交回答
  • 请问你是怎么训练的呀,我一直报错: zip_file.write_record(name, storage.data_ptr(), num_bytes)
    MemoryError

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last):
    File "F:\study\graduationProject\vue2_mt5\vue_flask\finetune.py", line 61, in
    trainer.train()
    File "D:\tool\Anaconda\anaconda3\envs\modelscope\lib\site-packages\modelscope\trainers\trainer.py", line 711, in train
    self.train_loop(self.train_dataloader)
    File "D:\tool\Anaconda\anaconda3\envs\modelscope\lib\site-packages\modelscope\trainers\trainer.py", line 1243, in train_loop
    self.invoke_hook(TrainerStages.after_train_epoch)
    File "D:\tool\Anaconda\anaconda3\envs\modelscope\lib\site-packages\modelscope\trainers\trainer.py", line 1395, in invoke_hook
    getattr(hook, fn_name)(self)
    File "D:\tool\Anaconda\anaconda3\envs\modelscope\lib\site-packages\modelscope\trainers\hooks\checkpoint\checkpoint_hook.py", line 177, in after_train_epoch
    self._do_save(trainer, CheckpointStrategy.by_epoch)
    File "D:\tool\Anaconda\anaconda3\envs\modelscope\lib\site-packages\modelscope\trainers\hooks\checkpoint\checkpoint_hook.py", line 160, in _do_save
    self._save_checkpoint(trainer, prefix)
    File "D:\tool\Anaconda\anaconda3\envs\modelscope\lib\site-packages\modelscope\trainers\hooks\checkpoint\checkpoint_hook.py", line 224, in _save_checkpoint
    self.processor.save_checkpoints(trainer, checkpoint_path_prefix,
    File "D:\tool\Anaconda\anaconda3\envs\modelscope\lib\site-packages\modelscope\trainers\hooks\checkpoint\checkpoint_processor.py", line 126, in save_checkpoints
    self.save_trainer_state(trainer, model, _train_state_file, meta,
    File "D:\tool\Anaconda\anaconda3\envs\modelscope\lib\site-packages\modelscope\trainers\hooks\checkpoint\checkpoint_processor.py", line 192, in save_trainer_state
    save_checkpoint(
    File "D:\tool\Anaconda\anaconda3\envs\modelscope\lib\site-packages\modelscope\utils\checkpoint.py", line 114, in save_checkpoint
    torch.save(checkpoint, f)
    File "D:\tool\Anaconda\anaconda3\envs\modelscope\lib\site-packages\torch\serialization.py", line 620, in save
    return
    File "D:\tool\Anaconda\anaconda3\envs\modelscope\lib\site-packages\torch\serialization.py", line 482, in exit
    self.file_like.write_end_of_file()
    RuntimeError: [enforce fail at inline_container.cc:424] . unexpected pos 1237267904 vs 1237267856

    2024-06-07 08:28:51
    赞同 展开评论 打赏
  • iic/nlp_mt5_zero-shot-augment_chinese-base 模型在ModelScope中的实现是基于T5架构的,这是因为MT5(多语言版T5)就是由Google团队基于T5模型进行改造以适应多语言任务的版本。

    2024-03-19 16:05:50
    赞同 展开评论 打赏
  • iic/nlp_mt5_zero-shot-augment_chinese-base 模型虽然在 ModelScope 中被提及,但其本质上基于 T5 架构,因为 MT5 (Multilingual T5) 是 T5 模型的一个多语言版本变种,因此在使用过程中会表现出与 T5 相似的特征。

    2024-03-19 10:59:21
    赞同 展开评论 打赏

ModelScope旨在打造下一代开源的模型即服务共享平台,为泛AI开发者提供灵活、易用、低成本的一站式模型服务产品,让模型应用更简单!欢迎加入技术交流群:微信公众号:魔搭ModelScope社区,钉钉群号:44837352

相关产品

  • 人工智能平台 PAI
  • 相关电子书

    更多
    英特尔+阿里云机器学习PAI-全栈赋能AI生态,加速应用落地 立即下载
    《DeepRec:大规模稀疏模型训练引擎》 立即下载
    机器学习在互联网后端技术中的应用 立即下载