开发者社区 > 大数据与机器学习 > 实时计算 Flink > 正文

求助!Flink1.17的webUI显示kafkaSource的Records Sent会翻倍

image.png
如图我的kafka里只有40条数据,但是webUi中显示Records Sent 80,求解为什么?
这是我flink消费kafka的代码

package com.xiaziyang.source;

import com.alibaba.fastjson.JSONObject;
import com.xiaziyang.deserializer.MyKafkaDeserializationSchema;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.serialization.TypeInformationSerializationSchema;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.connector.kafka.source.reader.deserializer.KafkaRecordDeserializationSchema;
import org.apache.flink.shaded.jackson2.com.fasterxml.jackson.databind.node.ObjectNode;
import org.apache.flink.streaming.api.datastream.DataStreamSink;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.KafkaDeserializationSchema;
import org.apache.flink.streaming.util.serialization.JSONKeyValueDeserializationSchema;
import org.apache.flink.types.Row;
import org.apache.kafka.clients.consumer.ConsumerRecord;

import java.io.IOException;
import java.lang.reflect.Type;


public class MyKafkaSource {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("hadoop103", 8081,"C:\\JavaStudy\\flink-1.17\\target\\original-flink-1.17-1.0-SNAPSHOT.jar");



        KafkaSource<ConsumerRecord<String, String>> kafkaSource = KafkaSource.<ConsumerRecord<String, String>>builder().setBootstrapServers("hadoop102:9092")
                .setTopics("flink_1")
                .setGroupId("xiaziyang1")
                .setStartingOffsets(OffsetsInitializer.latest())
                .setDeserializer(KafkaRecordDeserializationSchema.of(new MyKafkaDeserializationSchema()))
                .build();

        SingleOutputStreamOperator<ConsumerRecord<String, String>> source = env.fromSource(kafkaSource, WatermarkStrategy.noWatermarks(),"kafkaSource")
                .name("kafkaSource").setParallelism(1);
        SingleOutputStreamOperator<String> map = source.map(new MapFunction<ConsumerRecord<String, String>, String>() {
            @Override
            public String map(ConsumerRecord<String, String> value) throws Exception {
                return value.value().toString();
            }
        }).name("value").setParallelism(2);
        DataStreamSink<String> sink = map.print().name("print").setParallelism(1);


        env.execute();

    }
}

这个是自定义的kafka反序列器(应该和这个没关系,我用simpleString那个也会有webUI显示数据量翻倍的问题)

package com.xiaziyang.deserializer;


import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;

import org.apache.flink.streaming.connectors.kafka.KafkaDeserializationSchema;
import org.apache.flink.util.Collector;
import org.apache.kafka.clients.consumer.ConsumerRecord;

public class MyKafkaDeserializationSchema implements KafkaDeserializationSchema<ConsumerRecord<String, String>> {

    @Override
    public boolean isEndOfStream(ConsumerRecord<String, String> nextElement) {
        return false;
    }

    @Override
    public ConsumerRecord<String, String> deserialize(ConsumerRecord<byte[], byte[]> record) throws Exception {
//        System.out.println(record.topic()+"  "+record.offset()+"  "+ record.key()+ "  "+record.value()+"  "+record.headers());
        ConsumerRecord consumerRecord = new ConsumerRecord(record.topic(),
                record.partition(),
                record.offset(),
                new String(record.key(), "UTF-8"),
                new String(record.value(), "UTF-8"));

        return consumerRecord;

    }

    @Override
    public TypeInformation<ConsumerRecord<String, String>> getProducedType() {
        return TypeInformation.of(new TypeHint<ConsumerRecord<String, String>>(){});
    }
}

展开
收起
lilyung夏 2024-03-18 08:01:23 127 0
1 条回答
写回答
取消 提交回答
  • 出现这种情况的原因可能在于你的Flink作业设置和数据处理逻辑。

    • 并行度设置:在您的代码中,source和map操作的并行度分别为1和2。这意味着每个source分区的数据可能会被map算子处理两次(如果topic中有两个分区,则完全匹配这个情况)。每次map操作都会产生一个输出记录,因此原始的40条记录会被映射为80条记录。请注意,只有当source与map之间存在非一对一的数据传输时才会发生这种情况。

    • 检查消费行为:请确保没有其他因素导致每条消息被消费两次。例如,检查Flink任务配置、Kafka消费者组状态以及是否有重复订阅的情况。

    • 理解“Records Sent”统计:Flink的Web UI中的“Records Sent”统计的是经过整个计算流程后发送至下游算子或sink的记录总数,而不是原始输入源中的记录数。在这个场景下,由于map算子并行度为2,且无去重逻辑,所以即便原始数据只消费了一次,也会因为map操作而使记录翻倍。
    2024-03-18 09:13:09
    赞同 展开评论 打赏

实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。

相关产品

  • 实时计算 Flink版
  • 热门讨论

    热门文章

    相关电子书

    更多
    Flink CDC Meetup PPT - 龚中强 立即下载
    Flink CDC Meetup PPT - 王赫 立即下载
    Flink CDC Meetup PPT - 覃立辉 立即下载