flink的状态后端用rockdbs性能怎么样?我目前用内存做状态存储,到我状态太大了,上百G了。
使用RocksDB作为Flink的状态后端,对于处理大量状态数据通常是一个比较好的选择。当内存不足以存储上百GB的状态数据时,RocksDB可以作为一个替代方案,因为它能够将状态数据持久化到磁盘上。以下是对使用RocksDB作为Flink状态后端的性能考量:
state.backend.rocksdb.memory.managed
参数设为false可以禁用RocksDB的内存托管,这可能会对性能产生影响。state.backend.rocksdb.block.cache-size
参数来优化缓存大小,以提高读取性能。总的来说,如果您的状态数据量已经达到上百GB,并且内存存储已经不再可行,那么使用RocksDB作为状态后端是一个值得考虑的选择。不过,具体性能如何还需要根据您的作业特点和硬件环境进行实际测试和调优。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。