开发者社区 > ModelScope模型即服务 > 自然语言处理 > 正文

调用dashscope paraformer的实时语音识别API,识别结果混乱

  1. 调用方法:dashscope.audio.asr.Recogition
    image.png
  1. 返回结果:识别文字与语音内容完全无关
    image.png

展开
收起
1157292166612224 2024-02-20 11:51:59 247 0
1 条回答
写回答
取消 提交回答
  • 北京阿里云ACE会长

    先确认下,模型配置对吗。

    image.png

    image.png

    前提条件对吗

    image.png

    设置API-KEY

    export DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY

    需要使用您的API-KEY替换示例中的 YOUR_DASHSCOPE_API_KEY ,代码才能正常运行。

    示例代码需要满足:

    python sdk version: dashscope>=1.10.0

    java sdk version: >=2.5.0

    # For prerequisites running the following sample, visit https://help.aliyun.com/document_detail/611472.html
    
    import pyaudio
    import dashscope
    from dashscope.audio.asr import (Recognition, RecognitionCallback,
                                     RecognitionResult)
    
    dashscope.api_key='<your-dashscope-api-key>'
    
    mic = None
    stream = None
    
    class Callback(RecognitionCallback):
        def on_open(self) -> None:
            global mic
            global stream
            print('RecognitionCallback open.')
            mic = pyaudio.PyAudio()
            stream = mic.open(format=pyaudio.paInt16,
                              channels=1,
                              rate=16000,
                              input=True)
    
        def on_close(self) -> None:
            global mic
            global stream
            print('RecognitionCallback close.')
            stream.stop_stream()
            stream.close()
            mic.terminate()
            stream = None
            mic = None
    
        def on_event(self, result: RecognitionResult) -> None:
            print('RecognitionCallback sentence: ', result.get_sentence())
    
    callback = Callback()
    recognition = Recognition(model='paraformer-realtime-v1',
                              format='pcm',
                              sample_rate=16000,
                              callback=callback)
    recognition.start()
    
    while True:
        if stream:
            data = stream.read(3200, exception_on_overflow = False)
            recognition.send_audio_frame(data)
        else:
            break
    
    recognition.stop()
    
    
    package com.alibaba.dashscope.sample.recognition.quickstart;
    
    import com.alibaba.dashscope.audio.asr.recognition.Recognition;
    import com.alibaba.dashscope.audio.asr.recognition.RecognitionParam;
    import io.reactivex.BackpressureStrategy;
    import io.reactivex.Flowable;
    import java.nio.ByteBuffer;
    import javax.sound.sampled.AudioFormat;
    import javax.sound.sampled.AudioSystem;
    import javax.sound.sampled.TargetDataLine;
    
    public class Main {
    
      public static void main(String[] args) {
        // 创建一个Flowable<ByteBuffer>
        Flowable<ByteBuffer> audioSource =
            Flowable.create(
                emitter -> {
                  new Thread(
                          () -> {
                            try {
                              // 创建音频格式
                              AudioFormat audioFormat = new AudioFormat(16000, 16, 1, true, false);
                              // 根据格式匹配默认录音设备
                              TargetDataLine targetDataLine =
                                  AudioSystem.getTargetDataLine(audioFormat);
                              targetDataLine.open(audioFormat);
                              // 开始录音
                              targetDataLine.start();
                              ByteBuffer buffer = ByteBuffer.allocate(1024);
                              long start = System.currentTimeMillis();
                              // 录音30s并进行实时转写
                              while (System.currentTimeMillis() - start < 300000) {
                                int read = targetDataLine.read(buffer.array(), 0, buffer.capacity());
                                if (read > 0) {
                                  buffer.limit(read);
                                  // 将录音音频数据发送给流式识别服务
                                  emitter.onNext(buffer);
                                  buffer = ByteBuffer.allocate(1024);
                                  // 录音速率有限,防止cpu占用过高,休眠一小会儿
                                  Thread.sleep(20);
                                }
                              }
                              // 通知结束转写
                              emitter.onComplete();
                            } catch (Exception e) {
                              emitter.onError(e);
                            }
                          })
                      .start();
                },
                BackpressureStrategy.BUFFER);
    
        // 创建Recognizer
        Recognition recognizer = new Recognition();
        // 创建RecognitionParam,audioFrames参数中传入上面创建的Flowable<ByteBuffer>
        RecognitionParam param =
            RecognitionParam.builder()
                .model("paraformer-realtime-v1")
                .format("pcm")
                .sampleRate(16000)
                .apiKey("your-dashscope-api-key")
                .build();
    
        // 流式调用接口
        recognizer
            .streamCall(param, audioSource)
            // 调用Flowable的subscribe方法订阅结果
            .blockingForEach(
                result -> {
                  // 打印最终结果
                  if (result.isSentenceEnd()) {
                    System.out.println("Fix:" + result.getSentence().getText());
                  } else {
                    System.out.println("Result:" + result.getSentence().getText());
                  }
                });
        System.exit(0);
      }
    }
    

    image.png

    image.png

    2024-02-23 09:26:37
    赞同 展开评论 打赏

包含命名实体识别、文本分类、分词、关系抽取、问答、推理、文本摘要、情感分析、机器翻译等多个领域

热门讨论

热门文章

相关电子书

更多
Spring Boot2.0实战Redis分布式缓存 立即下载
CUDA MATH API 立即下载
API PLAYBOOK 立即下载