机器学习PAI把raw_feature放到倒数第二个,最后生成的数据表中,features里面所有的特征都只有特征值,没有特征名了,最后就都按照位置来区分吗?
在机器学习PAI中,如果你将raw_feature
放在倒数第二个位置,并且在处理过程中没有保留特征名,那么在最后生成的数据表中,所有的特征确实可能只包含特征值,而没有特征名。在这种情况下,通常需要通过特征的位置来区分不同的特征。这并不是一个理想的实践,因为依赖于位置来识别特征可能会导致以下问题:
为了确保特征的可读性和可维护性,建议在处理过程中保留特征名。以下是一些可能的方法:
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。