预估智能推荐AIRec推荐请求QPS需要考虑多个因素,例如推荐算法的复杂度、数据量、请求处理时间等。建议您先对这些因素进行评估,然后根据实际情况进行测试和调整。可以使用一些性能测试工具,例如Apache JMeter、LoadRunner等,来模拟高并发请求,以便更好地预估QPS。
预估智能推荐AIRec推荐请求QPS需要考虑以下几个因素:
请求量:根据业务需求,预估每秒钟的请求数量。例如,如果业务预估每秒钟需要处理1000个请求,那么AIRec就需要支持至少1000个请求的QPS。
推荐算法:不同的推荐算法在计算和处理推荐请求时,需要的时间和资源不同。例如,基于协同过滤的算法需要在用户和物品的大量交互数据中进行计算和匹配,处理速度相对较慢,而基于深度学习的算法需要进行模型推理,处理速度相对较快。
推荐模型规模:推荐模型的规模也会影响AIRec的请求QPS。如果模型规模较大,需要消耗更多的计算资源,处理速度相对较慢。
系统资源:AIRec需要足够的系统资源(CPU、内存、带宽等)去处理请求,否则会出现请求等待或者丢失的情况。
综上所述,要预估AIRec推荐请求的QPS,需要考虑业务需求、推荐算法、推荐模型规模和系统资源等因素。可以根据这些因素进行模拟和压力测试,从而确定最大的请求QPS。
您好,可以参考官方文档预估:https://help.aliyun.com/document_detail/181541.html。
我们可以通过系统每天在最繁忙时刻所接收到的请求数,来计算出系统可以承载的QPS。
推荐请求QPS即每秒向智能推荐AIRec请求推荐结果的次数,唯一的一名用户、所在场景(scene)确定一条推荐请求。
可参考10万DAU日活跃用户数预计所需配额为10QPS
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
智能推荐(Artificial Intelligence Recommendation,简称AIRec)基于阿里巴巴大数据和人工智能技术,以及在电商、内容、直播、社交等领域的业务沉淀,为企业开发者提供场景化推荐服务、全链路推荐系统开发平台、工程引擎组件库等多种形式服务,助力在线业务增长。