阿里数据中台的诞生解决了企业凸显的哪些数据问题?
• 数据标准问题:烟囱式开发及局部业务服务支撑,导致指标同名不同口径问题频发;历史上不同业务系统逐步迭代上线,相同对象属性编码不一致等问题突出。
• 数据质量问题:重复建设导致任务链冗长、任务繁多,计算资源紧张,数据时效性不好;口径梳理定义的文档沉淀到开发代码实现之间存在脱节,数据准确性保障风险高。
• 需求响应问题:烟囱式开发周期长、效率低,面向应用的服务化不足,导致业务响应速度慢,业务不满意的同时技术又觉得没有沉淀与成长;既懂业务又懂数据的人才不足,需求理解到开发实现涉及大量沟通,服务效率较差。
• 成本资源问题:烟囱式开发的重复建设浪费技术资源;上线难下线更难,源系统或业务变更不能及时反映到数据上,加之数据不标准,研发维护难上加难的同时,大量无用计算和存储造成资源浪费。
以上内容摘自《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》电子书,点击https://developer.aliyun.com/ebook/download/7832可下载完整版。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。