如下图所示,最下面就是基础数据层。
我们可以看到有用户的画像数据,有物料本身的数据,行为数据,评论数据。用户画像数据可能是用户的身高体重,过去买过的东西,购买偏好,他的学历等等。物料数据就是说物品的价格、颜色、产地。如果是视频的话,视频的内容、标签等等都属于物料本身的数据。行为数据是指用户和物料之间的交互。比如说用户看了一个视频,他点赞,收藏,投币。这些都是用户的行为数据。还有评论数据,第三方数据等等,可能不一定每个平台每个产品都会有。但是基本上这三个数据,user 的数据、item的数据、还有 behavior 的数据是一定要有的。当我们有了这三份数据之后,就会进入到数据加工存储层。在这一层我们会做一些数据加工,比如说把用户的特征加工出来,把物料的特征加工出来,把这个事件的特征加工出来。再往上一层就是基于这些特征去建模。我们刚才介绍了整个的推荐流程包含召回和排序这两个重要的模块。召回模块中,可以有多个算法并行去做。
召回完之后你需要排序,也有很多算法,究竟选哪一种算法,后续第三节课再说。接下来,你要有一个新的策略,还不能把推荐结果直接拿到线上,要有一些过滤去重、AB 测试、运营策略。比如说我昨天刚推荐给你一个小米手机,然后你就买了。我今天再推荐小米手机肯定是不合适的。最上层就是推荐业务,可以推荐一个广告,可以推荐商品,也可以推荐用户。比如说在社交应用中,可以把用户推荐给用户,让他们互相关注。有了这一整套推荐架构,怎么样让它去符合企业级推荐系统的四个基本要求,需要应用到一些云产品。最常见的做法是,基于云服务、云生态去搭建这些模块。
以上内容摘自《个性化推荐系统开发指南》电子书,点击https://developer.aliyun.com/topic/download?id=204可下载完成版
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。