商品销售往往有很强的季节性,特别是服装行业。在夏季的销售额肯定高于羽绒服的销售额。因此,在预测商品的销售额时,季节性是不可忽略的因素。
从2013年到2017年,商品销量不断上涨。一年之中,商品的销售额呈现很强的周期性。
在12月或1月时,商品销量到达波谷,随着月份不断攀升,7月销量到达波峰。所以在进行建模时,月份是很重要的特征之一。
0代表的周一,1代表周二……销售额在每周七天,也呈现出很强的周期性,在周日的销售额达到最高,周一跌到最低,然后慢慢回到高位。
Prophet是facebook开源的一个时间序列预测算法。Prophet的使用非常简单,只需要输入已知的时间序列的时间戳和相应的值以及需要预测的时间序列的长度,Prophet就能输出未来的时间序列走势。
接下来,对所有商店和商品的组合进行预测之前。先选择store 1和item 1进行预测,熟悉Prophet的使用。
以上内容摘自《Databricks数据洞悉》电子书,点击https://developer.aliyun.com/topic/download?id=8545可下载完整版
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
阿里云EMR是云原生开源大数据平台,为客户提供简单易集成的Hadoop、Hive、Spark、Flink、Presto、ClickHouse、StarRocks、Delta、Hudi等开源大数据计算和存储引擎,计算资源可以根据业务的需要调整。EMR可以部署在阿里云公有云的ECS和ACK平台。