Lakehouse中使用了什么技术来减少小文件的产生?
1)优化Delta表写入;Data bricks对Delta表的写入过程进行了优化,对每个partition使用一个专门的executor来合并其它executor对该partition的写入,从而避免了小文件的产生。
2)自动合并小文件:在每次向Delta表中写入数据之后,会检查Delta表中的表文件数量,如果Delta表中的小文件(size<128MB 则视为小文件)数量达到阂值,则会执行一次小文件合并,将Delta表中的小文件合并为一个新的大文件。
3)手动合并小文件:除了自动合并,Databricks还提Opitmize命令,使用户可以手动合并小文件,优化表结构,使得表文件的结构更加紧凑。
以上内容摘自《Databricks数据洞悉》电子书,点击https://developer.aliyun.com/topic/download?id=8545可下载完整版
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
阿里云EMR是云原生开源大数据平台,为客户提供简单易集成的Hadoop、Hive、Spark、Flink、Presto、ClickHouse、StarRocks、Delta、Hudi等开源大数据计算和存储引擎,计算资源可以根据业务的需要调整。EMR可以部署在阿里云公有云的ECS和ACK平台。