对话状态追踪任务难点中在一些经典的学术对话数据集中,例如 MultiWOZ[4],CrossWOZ[5]等,DST 任务普遍存在的挑战有哪些?
不同槽之间的取值存在指代关联。例如用户在前几轮交互已经预定好了某家餐馆,在当前轮时,用户说 “我还想要该餐馆附近的一家酒店”,那么隐含地,酒店的area 槽值应当和餐馆的 area 槽值是一致的,这需要DST模型有能力识别出来。 用户隐含接受系统推荐。例如,当系统推荐某家酒店时,用户针对推荐的结果的态度既可以是正面的表达(that’s great),也可以是非正面的表达(hold on please),对应的hotel-name 槽也就会填或不填。 真实用户表达丰富多样,增大解析难度。例如,在DST任务中,每个槽有一个特殊的槽值叫 dontcare,用于表示用户对该槽可选取所有值,即没有特定值限制。在 MultiWOZ 数据集中,用户对于 dontcare 的表达多样性很大,十分考验模型的语言理解能力。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。