开发者社区> 问答> 正文

DeepRec怎么解决这几个问题?

稀疏模型中特征存在冷热倾斜的特性,这产生了某些冷门特征很少被访问和更新导致的内存/显存浪费问题,以及超大模型内存/显存放不下的问题。DeepRec怎么解决这类问题?

展开
收起
岩茶芋泥 2022-04-19 10:53:39 473 0
来自:阿里技术
1 条回答
写回答
取消 提交回答
  • DeepRec提供了多级混合存储(支持最多四级的混合存储HBM+DRAM+PMEM+SSD)的能力,自动将冷门特征存放到廉价的存储介质中,将热门特征存放到访问更快、更贵的存储介质上,通过多级混合存储,使得单节点可以进行TB-10TB模型的Training和Serving。通过多级混合存储,能够更大发挥GPU训练稀疏模型的能力,同时降低由于存储资源限制造成的计算资源浪费,可以使用更少的机器进行相近规模的模型训练,或者使用相同数量的机器进行更大规模的训练。多级混合存储也能使得单机进行超大模型预测时避免分布式Serving带来的latency增大问题,提高大模型的预测性能的同时降低成本。多级混合存储功能也拥有自动发现特征的访问特性,基于高效的热度统计策略,将热度高的特征放置到快速的存储介质中,将低频的特征offload到低速存储介质中,再通过异步方式驱动特征在多个介质之间移动。

    image.png

    2022-04-19 16:16:16
    赞同 展开评论 打赏
问答地址:
来源圈子
更多
收录在圈子:
+ 订阅
问答排行榜
最热
最新

相关电子书

更多
Android应用启动速度和内存优化实践 立即下载
Android应用-启动速度和内存优化实践 立即下载
朱翥、贺小令|更快更稳更易用:Flink 自适应批处理能力演 立即下载