什么是Adagrad Decay Optimizer?
为支持超大规模训练而提出的一种改进版Adagrad优化器。当模型训练的样本量大,同时持续增量训练较长时间时,Adagrad优化器的梯度会趋近于0,导致新增训练的数据无法对模型产生影响。已有的累积打折的方案虽然可以解决梯度趋近0的问题,但也会带来模型效果变差的问题(通过iteration打折策略无法反映实际的业务场景特点)。Adagrad Decay Optimizer基于周期打折的策略,同一个周期内的样本相同的打折力度,兼顾数据的无限累积和样本顺序对模型的影响。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。