后羿调度的训练师——调度模拟器 后羿调度系统考虑了多重的调度权重因子及高度可配置化,这就引入了另外一个问题: 不同区域存在差异性,这么多因子的权重如何配置?初期可以依赖线上数据定性分析,但是随着业务的更加复杂和更多因子的引入,显然需要一个比人脑更高效的“训练师”来做决策,这个训练师就是调度模拟器。 图 3-13 描述了调度模拟器的工作流程。我们通过设定调度目标,并使用线上实 际的创建记录数据,在模拟器平台上结合机器学习模块反复播放,按照用户购买习惯,找到当前区域产品最佳权重分配策略,通过配置化接口设置到调度系统,并以此形成一个自闭环的反馈机制,逐步优化线上资源分配。 在介绍调度系统之后,不得不提到库存供给系统。如果说调度系统是厨师,负责把各种不同的物理机食材做资源分配,并通过管控系统创建出符合用户需求的虚拟机,那么库存供给系统就是准备食材的人。显而易见,调度系统想要烧出一道好菜,如果食材不好或者不符合预期,是万万不能的。 比如阿里云售卖的同一款产品,在不用的区域,购买用户不同,应用场景也不同,诸如创建的虚拟机平均 CPU 值、内存和 CPU 的配比、单位时间的并发创建量等也不同。在资源调度时需要适配这些“不同”,最典型的就是针对下层物理机构成的不同,在虚拟机内存和 CPU 配比较小的区域,尽量补充数量合适的物理机,以更好地分配虚拟机资源,甚至在差异性较大时,还可能需要适当调整装箱的策略权重参数等。
《弹性计算:无处不在的算力》电子书可以通过以下链接下载:https://developer.aliyun.com/topic/download?id=7996"
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。