偏倚(bias)、方差(variable)均衡是什么?
偏倚:指的是模型预测值与真实值的差异,是由使用的学习算法的某些错误或过于简单的假设造成的误差。它会导致模型欠拟合,很难有高的预测准确率。
方差:指的是不同训练数据训练的模型的预测值之间的差异,它是由于使用的算法模型过于复杂,导致对训练数据的变化十分敏感,这样会导致模型过拟合,使得模型带入了过多的噪音。
任何算法的学习误差都可以分解成偏倚、方差和噪音导致的固定误差。模型越复杂,会降低偏倚增加方差。为了降低整体的误差,我们需要对偏倚方差均衡,使得模型中不会由高偏倚或高方差。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。