MapReduce最早是由Google公司研究提出的一种面向大规模数据处理的并行计算模型和方法。Google公司设计MapReduce的初衷主要是为了解决其搜索引擎中大规模网页数据的并行化处理。Google公司发明了MapReduce之后首先用其重新改写了其搜索引擎中的Web文档索引处理系统。但由于MapReduce可以普遍应用于很多大规模数据的计算问题,因此自发明MapReduce以后,Google公司内部进一步将其广泛应用于很多大规模数据处理问题。Google公司内有上万个各种不同的算法问题和程序都使用MapReduce进行处理。 2003年和2004年,Google公司在国际会议上分别发表了两篇关于Google分布式文件系统和MapReduce的论文,公布了Google的GFS和MapReduce的基本原理和主要设计思想。 Hadoop的思想来源于Google的几篇论文,Google的那篇MapReduce论文里说:Our abstraction is inspired by the map and reduce primitives present in Lisp and many other functional languages。这句话提到了MapReduce思想的渊源,大致意思是,MapReduce的灵感来源于函数式语言(比如Lisp)中的内置函数map和reduce。函数式语言也算是阳春白雪了,离我们普通开发者总是很远。简单来说,在函数式语言里,map表示对一个列表(List)中的每个元素做计算,reduce表示对一个列表中的每个元素做迭代计算。它们具体的计算是通过传入的函数来实现的,map和reduce提供的是计算的框架。不过从这样的解释到现实中的MapReduce还太远,仍然需要一个跳跃。再仔细看,reduce既然能做迭代计算,那就表示列表中的元素是相关的,比如我想对列表中的所有元素做相加求和,那么列表中至少都应该是数值吧。而map是对列表中每个元素做单独处理的,这表示列表中可以是杂乱无章的数据。这样看来,就有点联系了。在MapReduce里,Map处理的是原始数据,自然是杂乱无章的,每条数据之间互相没有关系;到了Reduce阶段,数据是以key后面跟着若干个value来组织的,这些value有相关性,至少它们都在一个key下面,于是就符合函数式语言里map和reduce的基本思想了。 [2] 这样我们就可以把MapReduce理解为,把一堆杂乱无章的数据按照某种特征归纳起来,然后处理并得到最后的结果。Map面对的是杂乱无章的互不相关的数据,它解析每个数据,从中提取出key和value,也就是提取了数据的特征。经过MapReduce的Shuffle阶段之后,在Reduce阶段看到的都是已经归纳好的数据了,在此基础上我们可以做进一步的处理以便得到结果。这就回到了最初,终于知道MapReduce为何要这样设计。 [2] 2004年,开源项目Lucene(搜索索引程序库)和Nutch(搜索引擎)的创始人Doug Cutting发现MapReduce正是其所需要的解决大规模Web数据处理的重要技术,因而模仿Google MapReduce,基于Java设计开发了一个称为Hadoop的开源MapReduce并行计算框架和系统。自此,Hadoop成为Apache开源组织下最重要的项目,自其推出后很快得到了全球学术界和工业界的普遍关注,并得到推广和普及应用。 MapReduce的推出给大数据并行处理带来了巨大的革命性影响,使其已经成为事实上的大数据处理的工业标准。尽管MapReduce还有很多局限性,但人们普遍公认,MapReduce是到最为成功、最广为接受和最易于使用的大数据并行处理技术。MapReduce的发展普及和带来的巨大影响远远超出了发明者和开源社区当初的意料,以至于马里兰大学教授、2010年出版的《Data-Intensive Text Processing with MapReduce》一书的作者Jimmy Lin在书中提出:MapReduce改变了我们组织大规模计算的方式,它代表了第一个有别于冯·诺依曼结构的计算模型,是在集群规模而非单个机器上组织大规模计算的新的抽象模型上的第一个重大突破,是到所见到的最为成功的基于大规模计算资源的计算模型。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。