开发者社区> 问答> 正文

相对于MR来说,Spark的特点是什么?

相对于MR来说,Spark的特点是什么?

展开
收起
芯在这 2021-12-08 22:17:13 425 0
1 条回答
写回答
取消 提交回答
  • 减少磁盘 I/O,MR 会把 map 端将中间输出和结果存储在磁盘中,reduce 端又需要从磁盘读写中间结果,势必造成磁盘 I/O 称为瓶颈。Spark 允许将 map 端的中间结果输出和结果存储在内存中,reduce 端在拉取中间结果的时候避免了大量的磁盘 I/O。

    增加并行度,由于把中间结果写到磁盘与从磁盘读取中间结果属于不同的缓解,Hadoop 将他们简单地通过串行执行衔接起来,Spark 则把不同的环节抽象成为 Stage,允许多个 Stage 既可以串行又可以并行执行。

    避免重新计算,当 Stage 中某个分区的 Task 执行失败后,会重新对此 Stage 调度,但在重新调度的时候会过滤已经执行成功的分区任务,所以不会造成重复计算和资源浪费。

    可选的 Shuffle 排序,MR 在 Shuffle 之前有着固定的排序操作,而 Spark 则可以根据不同场景选择在 map 端排序还是 reduce 排序。

    灵活的内存管理策略,Spark 将内存分为堆上的存储内存、堆外的存储内存,堆上的执行内存,堆外的执行内存4个部分。

    2021-12-08 22:24:16
    赞同 展开评论 打赏
问答排行榜
最热
最新

相关电子书

更多
Hybrid Cloud and Apache Spark 立即下载
Scalable Deep Learning on Spark 立即下载
Comparison of Spark SQL with Hive 立即下载