1.输入数据:对文本进行分片,将每片内的数据作为单个Map Worker的输入。分片完毕后,多个Map Worker便可以同时工作。 在正式执行Map前,需要将输入数据进行分片。所谓分片,就是将输入数据切分为大小相等的数据块,每一块作为单个Map Worker的输入被处理,以便于多个Map Worker同时工作。
2.Map阶段:每个Map Worker在读入各自的数据后,进行计算处理,最终输出给Reduce。Map Worker在输出数据时,需要为每一条输出数据指定一个Key,这个Key值决定了这条数据将会被发送给哪一个Reduce Worker。Key值和Reduce Worker是多对一的关系,具有相同Key的数据会被发送给同一个Reduce Worker,单个Reduce Worker有可能会接收到多个Key值的数据。
3.在进入Reduce阶段之前,MapReduce框架会对数据按照Key值排序,使得具有相同Key的数据彼此相邻。如果您指定了合并操作(Combiner),框架会调用Combiner,将具有相同Key的数据进行聚合。Combiner的逻辑可以由您自定义实现。与经典的MapReduce框架协议不同,在MaxCompute中,Combiner的输入、输出的参数必须与Reduce保持一致,这部分的处理通常也叫做洗牌(Shuffle)。
4.Reduce阶段:进入Reduce阶段,相同Key的数据会传送至同一个Reduce Worker。同一个Reduce Worker会接收来自多个Map Worker的数据。每个Reduce Worker会对Key相同的多个数据进行Reduce操作。最后,一个Key的多条数据经过Reduce的作用后,将变成一个值。
5.输出结果数据。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。