推理过程:用于预测当前帧的目标位置,任何跟踪算法都需要。在该过程中,运动模型生成候选框,然后经过特征模型进行特征表达/提取,将含有特征的候选框输入观测模型进行决策(对目标位置的预测)。如视觉目标跟踪的定义一节所述,de facto rules 是在同一段视频中,相同的目标在前后两帧中的尺寸和空间位置不会发生巨大的变化。基于此,我们可以大大减少候选框的数量和种类,即我们只需要在上一帧预测的目标位置附近生成和其尺寸近似的候选框,从而提高整个跟踪系统的效率。
训练过程:通常在基于判别式方法的跟踪算法中需要,属于跟踪系统学习如何区分目标和非目标的过程,将在视觉目标跟踪的算法分类一节中详述。在该过程中,所谓的候选框生成应该被称作“正负样本生成”。在这里,正样本可以近似地理解为目标,负样本可以近似地理解为非目标的干扰项,例如背景或其他像目标但不是目标的物体。为了提高该类算法的跟踪系统对于正负样本的判别能力,在生成负样本时通常会在整个图像中寻找,而不仅限于上一帧预测的目标位置附近。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。