要搞懂什么是分区策略。分区策略是用来决定数据如何发送至下游。目前 Flink 支持了8中分区策略的实现 GlobalPartitioner 数据会被分发到下游算子的第一个实例中进行处理。
ShufflePartitioner 数据会被随机分发到下游算子的每一个实例中进行处理。
RebalancePartitioner 数据会被循环发送到下游的每一个实例中进行处理。
RescalePartitioner 这种分区器会根据上下游算子的并行度,循环的方式输出到下游算子的每个实例。这里有点难以理解,假设上游并行度为2,编号为A和B。下游并行度为4,编号为1,2,3,4。那么A则把数据循环发送给1和2,B则把数据循环发送给3和4。假设上游并行度为4,编号为A,B,C,D。下游并行度为2,编号为1,2。那么A和B则把数据发送给1,C和D则把数据发送给2。
BroadcastPartitioner 广播分区会将上游数据输出到下游算子的每个实例中。适合于大数据集和小数据集做Jion的场景。
ForwardPartitioner ForwardPartitioner 用于将记录输出到下游本地的算子实例。它要求上下游算子并行度一样。简单的说,ForwardPartitioner用来做数据的控制台打印。
KeyGroupStreamPartitioner Hash分区器。会将数据按 Key 的 Hash 值输出到下游算子实例中。
CustomPartitionerWrapper 用户自定义分区器。需要用户自己实现Partitioner接口,来定义自己的分区逻辑
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。