开发者社区> 问答> 正文

Spark的Cache和Checkpoint区别是什么?

Spark的Cache和Checkpoint区别是什么?

展开
收起
芯在这 2021-12-07 22:28:02 443 0
1 条回答
写回答
取消 提交回答
  • 作为区别于 Hadoop 的一个重要 feature,cache 机制保证了需要访问重复数据的应用(如迭代型算法和交互式应用)可以运行的更快。与 Hadoop MapReduce job 不同的是 Spark 的逻辑/物理执行图可能很庞大,task 中 computing chain 可能会很长,计算某些 RDD 也可能会很耗时。这时,如果 task 中途运行出错,那么 task 的整个 computing chain 需要重算,代价太高。因此,有必要将计算代价较大的 RDD checkpoint 一下,这样,当下游 RDD 计算出错时,可以直接从 checkpoint 过的 RDD 那里读取数据继续算。

    2021-12-07 22:28:24
    赞同 展开评论 打赏
问答排行榜
最热
最新

相关电子书

更多
Hybrid Cloud and Apache Spark 立即下载
Scalable Deep Learning on Spark 立即下载
Comparison of Spark SQL with Hive 立即下载