开发者社区> 问答> 正文

关于row number over的用法

文档上还没有更新topN怎么使用,我尝试用row_number() over() 跑了一下,但是报错,请问topN可以是RetractStream吗?

val monthstats = bsTableEnv.sqlQuery( """ |select |id,province,amount, |row_number() over(partition by id,province order by amount ) as rn |from mytable where type=1 |group by |id,province,amount """.stripMargin ) monthstats.toRetractStream[Row].print() Exception in thread "main" org.apache.flink.table.api.TableException: Retraction on Over window aggregation is not supported yet. Note: Over window aggregation should not follow a non-windowed GroupBy aggregation. at org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecOverAggregate.translateToPlanInternal(StreamExecOverAggregate.scala:178) at org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecOverAggregate.translateToPlanInternal(StreamExecOverAggregate.scala:56) at org.apache.flink.table.planner.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:54) at org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecOverAggregate.translateToPlan(StreamExecOverAggregate.scala:56) at org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToTransformation(StreamExecSink.scala:185) at org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToPlanInternal(StreamExecSink.scala:154) at org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToPlanInternal(StreamExecSink.scala:50) at org.apache.flink.table.planner.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:54) at org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToPlan(StreamExecSink.scala:50) at org.apache.flink.table.planner.delegation.StreamPlanner$$anonfun$translateToPlan$1.apply(StreamPlanner.scala:61) at org.apache.flink.table.planner.delegation.StreamPlanner$$anonfun$translateToPlan$1.apply(StreamPlanner.scala:60)*来自志愿者整理的flink邮件归档

展开
收起
小阿怪 2021-12-07 22:09:29 935 0
1 条回答
写回答
取消 提交回答
问答排行榜
最热
最新

相关电子书

更多
Show Me The Money! Cost & Reso 立即下载
Spark SQL: Past, Present and Future 立即下载
Spark SQL:Past Present &Future 立即下载