GBDT、XGBoost、LightGBM都是在竞赛和工业界使用频繁且经过检验效果非常好的机器学习库,都能有效地应用到分类、回归、排序问题,并且是集成类机器学习算法的典型代表。GBDT是以决策树(CART)为基学习器(Base estimateor)的Gradient Boosting算法,XGBoost扩展和改进了GDBT,XGBoost得益于并行化的处理,其算法运行更快,并且更适合大数据的分布式处理(这可能是它最核心的亮点之一)。另外,由于XGBoost的基学习器除了CART外,还可以用线性分类器,因此其适用的场景更广。除此以外,它在分割点的查找、缺失值或数据稀疏问题处理等方面也做了相对优化,因此XGBoost准确率也相对高一些。该库的安装直接使用!pip install xgboost命令即可,使用import xgboost验证是否成功安装。
资料来源:《Python数据分析与数据化运营(第2版)》,文章链接:https://developer.aliyun.com/article/726313
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。