LightGBM是微软推出的梯度boosting框架,也使用基于学习算法的决策树,它与XGB-oost,有相同的特性,例如都基于分布式的学习框架,都支持大规模数据处理和计算,都有更高的准确率。它比XGBoost的主要优化点在于通过多种方式减少内存的使用,例如基于Histogram的决策树算法、带深度限制的Leaf-wise的叶子生长策略、Cache命中率优化等。因此,它也是非常好的并行集成学习方法。LightGBM的安装官网的过程略显复杂,读者可直接使用!pip install lightgbm命令安装,之后使用import lightgbm测试安装是否成功。
资料来源:《Python数据分析与数据化运营(第2版)》,文章链接:https://developer.aliyun.com/article/726313
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。