开发者社区> 问答> 正文

为什么用pycharm总是报错呢??报错

这是基于用户的协同过滤算法的实现,但为什么总是报错:

Traceback (most recent call last):
  File "D:/haha/user", line 165, in <module>
    testUserBasedCF()
  File "D:/haha/user", line 155, in testUserBasedCF
    cf  =  UserBasedCF('u.data')
  File "D:/haha/user", line 8, in __init__
    self.readData()
  File "D:/haha/user", line 17, in readData
    userid,itemid,record = line.split('     ')
ValueError: need more than 1 value to unpack

具体代码如下: 
import random
import math

class UserBasedCF:
    def __init__(self,datafile = None):
        self.datafile = datafile
        self.readData()
        self.splitData(3,47)
    def readData(self,datafile = None):
        """
        read the data from the data file which is a data set
        """
        self.datafile = datafile or self.datafile
        self.data = []
        for line in open(self.datafile):
            userid,itemid,record = line.split('     ')
            self.data.append((userid,itemid,int(record)))
    def splitData(self,k,seed,data=None,M = 8):
        """
        split the data set
        testdata is a test data set
        traindata is a train set
        test data set / train data set is 1:M-1
        """
        self.testdata = {}
        self.traindata = {}
        data = data or self.data
        random.seed(seed)
        for user,item, record in self.data:
            if random.randint(0,M) == k:
                self.testdata.setdefault(user,{})
                self.testdata[user][item] = record
            else:
                self.traindata.setdefault(user,{})
                self.traindata[user][item] = record
    def userSimilarity(self,train = None):
        """
        One method of getting user similarity matrix
        """
        train = train or self.traindata
        self.userSim = dict()
        for u in train.keys():
            for v in train.keys():
                if u == v:
                    continue
                self.userSim.setdefault(u,{})
                self.userSim[u][v] = len(set(train[u].keys()) & set(train[v].keys()))
                self.userSim[u][v] /= math.sqrt(len(train[u]) * len(train[v]) *1.0)
    def userSimilarityBest(self,train = None):
        """
        the other method of getting user similarity which is better than above
        you can get the method on page 46
        In this experiment,we use this method
        """
        train = train or self.traindata
        self.userSimBest = dict()
        item_users = dict()
        for u,item in train.items():
            for i in item.keys():
                item_users.setdefault(i,set())
                item_users[i].add(u)
        user_item_count = dict()
        count = dict()
        for item,users in item_users.items():
            for u in users:
                user_item_count.setdefault(u,0)
                user_item_count[u] += 1
                for v in users:
                    if u == v:continue
                    count.setdefault(u,{})
                    count[u].setdefault(v,0)
                    count[u][v] += 1
        for u ,related_users in count.items():
            self.userSimBest.setdefault(u,dict())
            for v, cuv in related_users.items():
                self.userSimBest[u][v] = cuv / math.sqrt(user_item_count[u] * user_item_count[v] * 1.0)

    def recommend(self,user,train = None,k = 8,nitem = 40):
        train = train or self.traindata
        rank = dict()
        interacted_items = train.get(user,{})
        for v ,wuv in sorted(self.userSimBest[user].items(),key = lambda x : x[1],reverse = True)[0:k]:
            for i , rvi in train[v].items():
                if i in interacted_items:
                    continue
                rank.setdefault(i,0)
                rank[i] += wuv
        return dict(sorted(rank.items(),key = lambda x :x[1],reverse = True)[0:nitem])
    def recallAndPrecision(self,train = None,test = None,k = 8,nitem = 10):
        """
        Get the recall and precision, the method you want to know is listed
        in the page 43
        """
        train  = train or self.traindata
        test = test or self.testdata
        hit = 0
        recall = 0
        precision = 0
        for user in train.keys():
            tu = test.get(user,{})
            rank = self.recommend(user, train = train,k = k,nitem = nitem)
            for item,_ in rank.items():
                if item in tu:
                    hit += 1
            recall += len(tu)
            precision += nitem
        return (hit / (recall * 1.0),hit / (precision * 1.0))
    def coverage(self,train = None,test = None,k = 8,nitem = 10):
        train = train or self.traindata
        test = test or self.testdata
        recommend_items = set()
        all_items  = set()
        for user in train.keys():
            for item in train[user].keys():
                all_items.add(item)
            rank = self.recommend(user, train, k = k, nitem = nitem)
            for item,_ in rank.items():
                recommend_items.add(item)
        return len(recommend_items) / (len(all_items) * 1.0)
    def popularity(self,train = None,test = None,k = 8,nitem = 10):
        """
        Get the popularity
        the algorithm on page 44
        """
        train = train or self.traindata
        test = test or self.testdata
        item_popularity = dict()
        for user ,items in train.items():
            for item in items.keys():
                item_popularity.setdefault(item,0)
                item_popularity[item] += 1
        ret = 0
        n = 0
        for user in train.keys():
            rank = self.recommend(user, train, k = k, nitem = nitem)
            for item ,_ in rank.items():
                ret += math.log(1+item_popularity[item])
                n += 1
        return ret / (n * 1.0)

def testRecommend():
    ubcf = UserBasedCF('u.data')
    ubcf.readData()
    ubcf.splitData(4,100)
    ubcf.userSimilarity()
    user = "345"
    rank = ubcf.recommend(user,k = 3)
    for i,rvi in rank.items():

        items = ubcf.testdata.get(user,{})
        record = items.get(i,0)
        print(i,rvi,record)
def testUserBasedCF():
    cf  =  UserBasedCF('u.data')
    cf.userSimilarityBest()
    print ('K',"recall",'precision','coverage','popularity')
    for k in [5,10,20,40,80,160]:
        recall,precision = cf.recallAndPrecision(k = k)
        coverage = cf.coverage(k = k)
        popularity = cf.popularity(k = k)
        print(k,recall * 100,precision * 100,coverage * 100,popularity)

if __name__ == "__main__":
    testUserBasedCF()



展开
收起
爱吃鱼的程序员 2020-06-15 19:50:10 2281 0
2 条回答
写回答
取消 提交回答
  • 利用PyCharm用于一般IDE具备的功能,可不少人在Linux系统中安装PyCharm时会出现错误,提示Error: cannot start PyCharm,这是什么错误呢?我们又该如何来解决呢?下面小编就教大家Linux安装PyCharm提示错误的解决方法,有兴趣的网友们可以一起来学习下。。

      Error: cannot start PyCharm

      No JDK found to run PyCharm. Please validate either PYCHARM_JDK, JDK_HOME or JAVA_HOME光纤激光切割机 http://www.6618cnc.comenvironment variable points to valid JDK installation.

      解决方法:

      进入jdk目录, cd 。。/。。/jdk1.7.0_60/

      执行 export JAVA_HOME= 。。/。。/jdk1.7.0_60/(按各自电脑的jdk目录设置)

      然后重新安装pycharm即可。

      上面就是小编总结的Linux安装PyCharm提示错误的解决方法,如果你在安装的过程中出现了错误提示,按照本文介绍的方法进行重新安装即可。

    2020-06-16 19:14:09
    赞同 1 展开评论 打赏
  • https://developer.aliyun.com/profile/5yerqm5bn5yqg?spm=a2c6h.12873639.0.0.6eae304abcjaIB

    估计你的 line.split()只返回了一个值,不能赋给左边的三个变量。

    >>>'hello'.split('')

    ['hello']

    >>>a,b,c='hello'.split('')
    Traceback(mostrecentcalllast):
     File"<interactiveinput>",line1,in<module>
    ValueError:needmorethan1valuetounpack

    ValueError:needmorethan1valuetounpack

    是不是line没有值,控制台打出来看一下。

    print(heloo)

    2020-06-15 19:50:27
    赞同 展开评论 打赏
问答分类:
问答标签:
问答地址:
问答排行榜
最热
最新

相关电子书

更多
低代码开发师(初级)实战教程 立即下载
冬季实战营第三期:MySQL数据库进阶实战 立即下载
阿里巴巴DevOps 最佳实践手册 立即下载