Markov(阿里妈妈功能测试平台)是在测试转型大背景下自研的新一代功能测试平台,相较于传统的功能测试框架具有着诸多的优点,比如可视化用例编写管理、分布式的沙盒环境和测试数据构建、测试流程pipeline管理。此外,基于该平台还衍生出了许多智能化测试技术,如基于朴素贝叶斯的用例推荐、参数组合膨胀过滤的用例推荐、基于用例编排算法的智能回归技术、基于用例画像的智能排查系统、精准智能测试等。我们可将Markov视为新一代的功能测试框架,相对于传统经典的测试框架(如pytest)+jenkins的模式,Markov模式对于使用者的门槛更低,能让不懂测试的开发和算法同学简单的进行自助测试,达到了让天下没有难做的"测试"的目标。
pipeline即一份配置文件,与功能测试而言主要的两部分,第一个是测试环境部署相关的,主要是各种参数(比如ip,部署脚本,docker等参数),第二个是case执行相关的参数(包括了该模块的该如何发送,校验,页面上该展示何种数据源等)。可以抽象理解成,pipeline仅为部署页和用例调试页设定了特定模块所需配置参数。此外,pipeline设计为通用的扩展形式,比如用户可自定义对比测试/压测/集成测试等。
可视化的用例管理中,Markov定义了一种面向功能测试的通用页面结构,包含了用例名/描述/业务分组/标签/测试数据/发送query/期望结果等元素,结合pipeline中的测试流程配置,实现了动态渲染用例编辑页的结果,让测试平台能接入更多的测试模块。
可视化的测试环境管理,Markov基于分布式容器部署技术,实现了在测试机上部署多容器能力,支持了镜像/rpm/基线等多种部署方式,让测试资源最大化利用,并支持页面化的环境部署/锁定/删除/异常检测等完善的管理能力。(本期只开放前端可视化,具体测试部署暂为开放)
支持可视化的环境选择/测试数据修改后一键执行,透出实时日志和结果。后端执行引擎结合pipeline流程达到动态化load执行插件,以此调度,十分灵活。
支持页面化选取批量用例和测试环境,可选择多种回归模式(本期开放caseBycase的基本模式),执行完成后可产出回归测试报告。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。