开发者社区> 问答> 正文

根据另一个数据集中的列值在一个数据框中创建列

我有两个熊猫数据框

import pandas as pd 
import numpy as np
import datetime

# intialise data of lists. 
data = {'group'      :["A","A","A","B","B","B","B"],
        'val': ["AA","AB","AC","B1","B2","AA","AB"],
        'cal1'     :[4,5,7,6,5,8,9],
        'cal2'     :[10,100,100,10,1,10,100]
       } 

# Create DataFrame 
df1 = pd.DataFrame(data) 
df1

    group   val cal1    cal2
0   A       AA  4       10
1   A       AB  5       100
2   A       AC  7       100
3   B       B1  6       10
4   B       B2  5       1
5   B       AA  8       10
6   B       AB  9       100

import pandas as pd 
import numpy as np
import datetime

# intialise data of lists. 
data = {'group'      :["A","A","A","B","B","B","B"],
        'flag' : [1,0,0,1,0,0,0],
        'var1': [1,2,3,7,8,9,10]
       } 

# Create DataFrame 
df2 = pd.DataFrame(data) 
df2

   group   flag var1
0   A       1   1
1   A       0   2
2   A       0   3
3   B       1   7
4   B       0   8
5   B       0   9
6   B       0   10

步骤1:根据df1中的唯一“ val”在df2中创建列,如下所示:

unique_val = df1['val'].unique().tolist()
new_cols = [t + '_new' for t in unique_val]
for i in new_cols:
    df2[i] = 0
df2
    group   flag    var1    AA_new  AB_new  AC_new  B1_new  B2_new
0   A       1       1       0       0       0       0        0
1   A       0       2       0       0       0       0        0
2   A       0       3       0       0       0       0        0
3   B       1       7       0       0       0       0        0
4   B       0       8       0       0       0       0        0
5   B       0       9       0       0       0       0        0
6   B       0       10      0       0       0       0        0

步骤2:对于标志= 1的行,AA_new将被计算为var1(来自df2)*对于组“ A”为df1中的'cal1'值,而val“ AA” *对于组“ A”则为df1中为'cal2'的值”和val“ AA”,类似地,将AB_new计算为var1(来自df2)*对于组“ A”,来自df1的'cal1'的值; val“ AB” *值“ AB”,对于组“ A”,来自df1的cal2'的值val“ AB”

我的预期输出应如下所示:

    group   flag    var1    AA_new  AB_new  AC_new  B1_new  B2_new
0   A       1       1       40      500     700     0        0
1   A       0       2       0       0       0       0        0
2   A       0       3       0       0       0       0        0
3   B       1       7       570     6300    0       420      35
4   B       0       8       0       0       0       0        0
5   B       0       9       0       0       0       0        0
6   B       0       10      0       0       0       0        0

问题来源:stackoverflow

展开
收起
is大龙 2020-03-24 22:36:11 436 0
1 条回答
写回答
取消 提交回答
  • DataFrame.pivot_tableGroupBy.bfill一起使用,然后我们可以使用DataFrame.mul

    df2.assign(\*df1.pivot_table(columns='val',
                                 values='cal',
                                 index = ['group', df2.index])
                    .add_suffix('_new')
                    .groupby(level=0)
                   #.apply(lambda x: x.bfill().ffill()) #maybe neccesary instead bfill
                    .bfill()
                    .reset_index(level='group',drop='group')
                    .fillna(0)
                    .mul(df2['var1'], axis=0)
                    .where(df2['flag'].eq(1), 0)
                   #.astype(int) # if you want int
    )
    

    输出

      group  flag  var1  AA_new  AB_new  AC_new  B1_new  B2_new
    0     A     1     1     4.0     5.0     7.0     0.0     0.0
    1     A     0     2     0.0     0.0     0.0     0.0     0.0
    2     A     0     3     0.0     0.0     0.0     0.0     0.0
    3     B     1     7    56.0    63.0     0.0    42.0    35.0
    4     B     0     8     0.0     0.0     0.0     0.0     0.0
    5     B     0     9     0.0     0.0     0.0     0.0     0.0
    6     B     0    10     0.0     0.0     0.0     0.0     0.0
    

    编辑

    df2.assign(\*df1.assign(mul_cal = df1['cal1'].mul(df1['cal2']))
                    .pivot_table(columns='val',
                                 values='mul_cal',
                                 index = ['group', df2.index])
                    .add_suffix('_new')
                    .groupby(level=0)
                   #.apply(lambda x: x.bfill().ffill()) #maybe neccesary instead bfill
                    .bfill()
                    .reset_index(level='group',drop='group')
                    .fillna(0)
                    .mul(df2['var1'], axis=0)
                    .where(df2['flag'].eq(1), 0)
                   #.astype(int) # if you want int
    )
    
    
      group  flag  var1  AA_new  AB_new  AC_new  B1_new  B2_new
    0     A     1     1    40.0   500.0   700.0     0.0     0.0
    1     A     0     2     0.0     0.0     0.0     0.0     0.0
    2     A     0     3     0.0     0.0     0.0     0.0     0.0
    3     B     1     7   560.0  6300.0     0.0   420.0    35.0
    4     B     0     8     0.0     0.0     0.0     0.0     0.0
    5     B     0     9     0.0     0.0     0.0     0.0     0.0
    6     B     0    10     0.0     0.0     0.0     0.0     0.0
    

    回答来源:stackoverflow

    2020-03-24 22:36:19
    赞同 展开评论 打赏
问答分类:
问答地址:
问答排行榜
最热
最新

相关电子书

更多
低代码开发师(初级)实战教程 立即下载
冬季实战营第三期:MySQL数据库进阶实战 立即下载
阿里巴巴DevOps 最佳实践手册 立即下载