开发者社区> 问答> 正文

获取python应用程序的内存使用情况

我的主要目标是知道我的python应用程序在执行期间需要占用多少内存。

我在Windows-32和Windows-64上使用python 2.7.5。

我在这里找到了一种获取有关过程的信息的方法:http : //code.activestate.com/recipes/578513-get-memory-usage-of-windows-processes-using-getpro/

为了方便起见,将代码放在这里:

"""Functions for getting memory usage of Windows processes."""

__all__ = ['get_current_process', 'get_memory_info', 'get_memory_usage']

import ctypes
from ctypes import wintypes

GetCurrentProcess = ctypes.windll.kernel32.GetCurrentProcess
GetCurrentProcess.argtypes = []
GetCurrentProcess.restype = wintypes.HANDLE

SIZE_T = ctypes.c_size_t

class PROCESS_MEMORY_COUNTERS_EX(ctypes.Structure):
    _fields_ = [
        ('cb', wintypes.DWORD),
        ('PageFaultCount', wintypes.DWORD),
        ('PeakWorkingSetSize', SIZE_T),
        ('WorkingSetSize', SIZE_T),
        ('QuotaPeakPagedPoolUsage', SIZE_T),
        ('QuotaPagedPoolUsage', SIZE_T),
        ('QuotaPeakNonPagedPoolUsage', SIZE_T),
        ('QuotaNonPagedPoolUsage', SIZE_T),
        ('PagefileUsage', SIZE_T),
        ('PeakPagefileUsage', SIZE_T),
        ('PrivateUsage', SIZE_T),
    ]

GetProcessMemoryInfo = ctypes.windll.psapi.GetProcessMemoryInfo
GetProcessMemoryInfo.argtypes = [
    wintypes.HANDLE,
    ctypes.POINTER(PROCESS_MEMORY_COUNTERS_EX),
    wintypes.DWORD,
]
GetProcessMemoryInfo.restype = wintypes.BOOL

def get_current_process():
    """Return handle to current process."""
    return GetCurrentProcess()

def get_memory_info(process=None):
    """Return Win32 process memory counters structure as a dict."""
    if process is None:
        process = get_current_process()
    counters = PROCESS_MEMORY_COUNTERS_EX()
    ret = GetProcessMemoryInfo(process, ctypes.byref(counters),
                               ctypes.sizeof(counters))
    if not ret:
        raise ctypes.WinError()
    info = dict((name, getattr(counters, name))
                for name, _ in counters._fields_)
    return info

def get_memory_usage(process=None):
    """Return this process's memory usage in bytes."""
    info = get_memory_info(process=process)
    return info['PrivateUsage']

if __name__ == '__main__':
    import pprint
    pprint.pprint(get_memory_info())
结果如下:

{'PageFaultCount': 1942L,
 'PagefileUsage': 4624384L,
 'PeakPagefileUsage': 4624384L,
 'PeakWorkingSetSize': 7544832L,
 'PrivateUsage': 4624384L,
 'QuotaNonPagedPoolUsage': 8520L,
 'QuotaPagedPoolUsage': 117848L,
 'QuotaPeakNonPagedPoolUsage': 8776L,
 'QuotaPeakPagedPoolUsage': 117984L,
 'WorkingSetSize': 7544832L,
 'cb': 44L}

但这不令我满意。这些结果为我提供了完整的python处理信息,而我只需要在Python框架之上运行的特定应用程序。

我在互联网上以及在Stack Overflow上都看到了几个内存分析器,但是它们对于我来说太大了。我唯一需要的信息是我的应用程序自身消耗了多少内存-而不考虑所有Python框架。

我该如何实现?

展开
收起
祖安文状元 2020-02-23 16:38:39 5624 0
1 条回答
写回答
取消 提交回答
  • 这是一个基于(os,psutil)模块的简单Python方式。感谢(Dataman)和(RichieHindle)的答案。

    import os
    import psutil
    
    
    ## - Get Process Id of This Running Script -
    proc_id = os.getpid()
    
    print '\nProcess ID: ', proc_id
    
    
    #--------------------------------------------------
    ## - Get More Info Using the Process Id
    
    ObjInf = psutil.Process(proc_id)
    
    print '\nProcess %s Info:' % proc_id, ObjInf
    
    #--------------------------------------------------
    ## - Proccess Name of this program 
    
    name = ObjInf.name()
    
    print '\nThis Program Process name:', name
    
    #--------------------------------------------------
    ## - Print CPU Percentage
    
    CpuPerc = ObjInf.cpu_percent()
    
    print '\nCpu Percentage:', CpuPerc
    
    
    #---------------------------------------------------
    ## - Print Memory Usage
    
    memory_inf = ObjInf.memory_full_info()
    
    print '\nMemory Info:', memory_inf, '\n'
    
    
    
    ## Print available commands you can do with the psutil obj
    
    for c in dir(ObjInf):
        print c
    
    

    如果您的脚本是用python编写的,那么您的脚本就是python本身,因此没有它就无法运行,因此,如果您想查看python本身消耗了多少内存,只需运行一个空的python脚本,您将在此处扣除,您的脚本将是主要的资源使用者,它恰好是在python中制作的,因此是python。

    现在,如果您要检查线程的内存使用情况,那么此问题可能会有所帮助-> 为什么python线程会消耗这么多的内存?

    2020-02-23 16:38:55
    赞同 展开评论 打赏
问答排行榜
最热
最新

相关电子书

更多
Improving Python and Spark 立即下载
Improving Python and Spark Per 立即下载
From Python Scikit-Learn to Sc 立即下载