开发者社区> 问答> 正文

hadoop和spark的都是并行计算,那么他们有什么相同和区别?

hadoop和spark的都是并行计算,那么他们有什么相同和区别?

展开
收起
茶什i 2019-10-29 14:37:29 3369 0
2 条回答
写回答
取消 提交回答
  • 解决问题的层面不一样:首先,Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop实质上更多是一个分布式数据基础设施: 它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着您不需要购买和维护昂贵的服务器硬件。同时,Hadoop还会索引和跟踪这些数据,让大数据处理和分析效率达到前所未有的高度。Spark,则是那么一个专门用来对那些分布式存储的大数据进行处理的工具,它并不会进行分布式数据的存储。

    这两者可合可分,Hadoop除了提供为大家所共识的HDFS分布式数据存储功能之外,还提供了叫做MapReduce的数据处理功能。所以这里我们完全可以抛开Spark,使用Hadoop自身的MapReduce来完成数据的处理。相反,Spark也不是非要依附在Hadoop身上才能生存。但如上所述,毕竟它没有提供文件管理系统,所以,它必须和其他的分布式文件系统进行集成才能运作。这里我们可以选择Hadoop的HDFS,也可以选择其他的基于云的数据系统平台。但Spark默认来说还是被用在Hadoop上面的,毕竟,大家都认为它们的结合是最好的。

    2019-10-30 21:17:03
    赞同 展开评论 打赏
  • 两者都是用mr模型来进行并行计算,hadoop的一个作业称为job,job里面分为map task和reduce task,每个task都是在自己的进程中运行的,当task结束时,进程也会结束。
    spark用户提交的任务成为application,一个application对应一个sparkcontext,app中存在多个job,每触发一次action操作就会产生一个job。 这些job可以并行或串行执行,每个job中有多个stage,stage是shuffle过程中DAGSchaduler通过RDD之间的依赖关系划分job而来的,每个stage里面有多个task,组成taskset有TaskSchaduler分发到各个executor中执行,executor的生命周期是和app一样的,即使没有job运行也是存在的,所以task可以快速启动读取内存进行计算。
    hadoop的job只有map和reduce操作,表达能力比较欠缺而且在mr过程中会重复的读写hdfs,造成大量的io操作,多个job需要自己管理关系。
    spark的迭代计算都是在内存中进行的,API中提供了大量的RDD操作如join,groupby等,而且通过DAG图可以实现良好的容错。

    2019-10-30 15:45:04
    赞同 展开评论 打赏
问答排行榜
最热
最新

相关电子书

更多
《构建Hadoop生态批流一体的实时数仓》 立即下载
零基础实现hadoop 迁移 MaxCompute 之 数据 立即下载
CIO 指南:如何在SAP软件架构中使用Hadoop 立即下载

相关实验场景

更多