(2)Flink CEP SQL严格近邻代码演示-风控系统构建利器

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink CEP SQL严格近邻代码演示-风控系统构建利器

上一篇我们对Flink CEP做了简单介绍,这一篇我们通过代码来演示一下Flink CEP SQL中的严格近邻效果:
Flinkcep封面.png
(1)pom依赖:

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-cep_${scala.binary.version}</artifactId>
    <version>${flink.version}</version>
</dependency>

(2)定义一个消息对象

public static class Ticker {
    public long id;
    public String symbol;
    public long price;
    public long tax;
    public LocalDateTime rowtime;

    public Ticker() {
    }

    public Ticker(long id, String symbol, long price, long item, LocalDateTime rowtime) {
        this.id = id;
        this.symbol = symbol;
        this.price = price;
        this.tax = tax;
        this.rowtime = rowtime;
    }
}

(3)构造数据,定义事件组合

public static void main(String[] args) {
    EnvironmentSettings settings = null;
    StreamTableEnvironment tEnv = null;
    try {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        settings = EnvironmentSettings.newInstance()
                .useBlinkPlanner()
                .inStreamingMode()
                .build();
        tEnv = StreamTableEnvironment.create(env, settings);
        System.out.println("===============CEP_SQL_9=================");
        final DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
        DataStream<Ticker> dataStream =
            env.fromElements(
                new Ticker(1, "ACME", 22, 1, LocalDateTime.parse("2021-12-10 10:00:00", dateTimeFormatter)),
                new Ticker(3, "ACME", 19, 1, LocalDateTime.parse("2021-12-10 10:00:02", dateTimeFormatter)),
                new Ticker(4, "ACME", 23, 3, LocalDateTime.parse("2021-12-10 10:00:03", dateTimeFormatter)),
                new Ticker(5, "Apple", 25, 2, LocalDateTime.parse("2021-12-10 10:00:04", dateTimeFormatter)),
                new Ticker(6, "Apple", 18, 1, LocalDateTime.parse("2021-12-10 10:00:05", dateTimeFormatter)),
                new Ticker(7, "Apple", 16, 1, LocalDateTime.parse("2021-12-10 10:00:06", dateTimeFormatter)),
                new Ticker(8, "Apple", 14, 2, LocalDateTime.parse("2021-12-10 10:00:07", dateTimeFormatter)),
                new Ticker(9, "Apple", 15, 2, LocalDateTime.parse("2021-12-10 10:00:08", dateTimeFormatter)),
                new Ticker(10, "Apple", 25, 2, LocalDateTime.parse("2021-12-10 10:00:09", dateTimeFormatter)),
                new Ticker(11, "Apple", 22, 1, LocalDateTime.parse("2021-12-10 10:00:11", dateTimeFormatter)),
                new Ticker(12, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:12", dateTimeFormatter)),
                new Ticker(13, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:13", dateTimeFormatter)),
                new Ticker(14, "Apple", 25, 1, LocalDateTime.parse("2021-12-10 10:00:14", dateTimeFormatter)),
                new Ticker(15, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:15", dateTimeFormatter)),
                new Ticker(16, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:16", dateTimeFormatter)),
                new Ticker(17, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:17", dateTimeFormatter)),
                new Ticker(18, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:18", dateTimeFormatter)));

        Table table = tEnv.fromDataStream(dataStream, Schema.newBuilder()
                .column("id", DataTypes.BIGINT())
                .column("symbol", DataTypes.STRING())
                .column("price", DataTypes.BIGINT())
                .column("tax", DataTypes.BIGINT())
                .column("rowtime", DataTypes.TIMESTAMP(3))
                .watermark("rowtime", "rowtime - INTERVAL '1' SECOND")
                .build());
        tEnv.createTemporaryView("CEP_SQL_9", table);

        String sql = "SELECT * " +
                "FROM CEP_SQL_9 " +
                "    MATCH_RECOGNIZE ( " +
                "        PARTITION BY symbol " +       //按symbol分区,将相同卡号的数据分到同一个计算节点上。
                "        ORDER BY rowtime " +          //在窗口内,对事件时间进行排序。
                "        MEASURES " +                   //定义如何根据匹配成功的输入事件构造输出事件
                "            e1.id as id,"+
                "            AVG(e1.price) as avgPrice,"+
                "            e1.rowtime AS start_tstamp, " +
                "            e3.rowtime AS end_tstamp " +
                "        ONE ROW PER MATCH " +                                      //匹配成功输出一条
                "        AFTER MATCH  skip to next row " +                   //匹配后跳转到下一行
                "        PATTERN ( e1 e2 e3) WITHIN INTERVAL '2' MINUTE" +
                "        DEFINE " +                                                 //定义各事件的匹配条件
                "            e1 AS " +
                "                e1.price = 25 , " +
                "            e2 AS " +
                "                e2.price > 10 ," +
                "            e3 AS " +
                "                e3.price = 15 " +
                "    ) MR";
        
        
        TableResult res = tEnv.executeSql(sql);
        res.print();
        tEnv.dropTemporaryView("CEP_SQL_9");
            } catch (Exception e) {
                LOG.error(e.getMessage(), e);
            }
}

(4)关键代码解释:
1.png
输出两分钟内匹配到的数据,输出信息:
2.png
(5)执行效果:
3.png
4.png
从数据集中匹配到了两组符合要求的数据。
5.png

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
4月前
|
SQL 存储 测试技术
SQL在构建系统中的应用:关键步骤与技巧
在构建基于数据库的应用系统时,SQL(Structured Query Language)作为与数据库交互的核心语言,扮演着至关重要的角色
|
11天前
|
SQL 大数据 数据处理
Flink SQL 详解:流批一体处理的强大工具
Flink SQL 是为应对传统数据处理框架中流批分离的问题而诞生的,它融合了SQL的简洁性和Flink的强大流批处理能力,降低了大数据处理门槛。其核心工作原理包括生成逻辑执行计划、查询优化和构建算子树,确保高效执行。Flink SQL 支持过滤、投影、聚合、连接和窗口等常用算子,实现了流批一体处理,极大提高了开发效率和代码复用性。通过统一的API和语法,Flink SQL 能够灵活应对实时和离线数据分析场景,为企业提供强大的数据处理能力。
106 26
|
4月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
108 0
|
2月前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
448 2
探索Flink动态CEP:杭州银行的实战案例
|
2月前
|
SQL 存储 缓存
Flink SQL Deduplication 去重以及如何获取最新状态操作
Flink SQL Deduplication 是一种高效的数据去重功能,支持多种数据类型和灵活的配置选项。它通过哈希表、时间窗口和状态管理等技术实现去重,适用于流处理和批处理场景。本文介绍了其特性、原理、实际案例及源码分析,帮助读者更好地理解和应用这一功能。
153 14
|
4月前
|
SQL 存储 数据库
SQL在构建系统中的应用:关键要素与编写技巧
在构建基于数据库的系统时,SQL(Structured Query Language)扮演着至关重要的角色
|
4月前
|
SQL 大数据 API
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
75 0
|
4月前
|
SQL 消息中间件 分布式计算
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
116 0
|
4月前
|
分布式计算 监控 大数据
大数据-129 - Flink CEP 详解 Complex Event Processing - 复杂事件处理
大数据-129 - Flink CEP 详解 Complex Event Processing - 复杂事件处理
92 0
|
5月前
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")