玩转数据分析——matplotlib必备代码,代码直接用!!

简介: 玩转数据分析——matplotlib必备代码,代码直接用!!

线

线

线y=x^2

线线

线



线

importmatplotlib.pyplotasplt

#(0,1)(2,4)

plt.plot([0,2],[1,4])

plt.show()


线

plt.plot(x,y)

egimportmatplotlib.pyplotaspltx=[1,2,3,4,5]

squares=[1,4,9,16,25]

plt.plot(x,squares)plt.show()



线y=x^2

importmatplotlib.pyplotasplt

#200x

x=range(-100,100)

#y

y=[i**2foriinx]

#线

plt.plot(x,y)

#savefig线result.jpg

plt.savefig('result.jpg')#plt.savefig('cos')cos.png

plt.show()


线线

importmatplotlib.pyplotasplt

importnumpyasnp

#x0-10100

x=np.linspace(0,10,100)

sin_y=np.sin(x)

#线

plt.plot(x,sin_y)

#线

cos_y=np.cos(x)

plt.plot(x,cos_y)

plt.show()


plt.scatter(x,y)

egimportmatplotlib.pyplotaspltimportnumpyasnp#x=np.linspace(0,10,100)#010100

plt.scatter(x,np.sin(x))

plt.show()


plt.bar(x,width,align='center',**kwargs)

Parameters:

x:

width:

align:

{center,edge},optional,default:center

**kwargs:

color:


plt.pie(x,labels=,autopct=,colors)

Parameters:x:

labels:

autopct:%1.2f%%

colors:


matplotlib.pyplot.hist(x,bins=None)

Parameters:x:

bins:


线

#

importmatplotlib.pyplotasplt

importnumpyasnpaa

x=np.linspace(-10,10,100)

y=np.linspace(-10,10,100)

#xya

X,Y=np.meshgrid(x,y)

#Z

Z=np.sqrt(X**2+Y**2)

plt.contourf(X,Y,Z)

plt.contour(X,Y,Z)

#z=0.

plt.show()


使pyplotMatplotlib


importmatplotlib.pyplotasplt

#3D

frommpl_toolkits.mplot3dimportAxes3D

#XYZ

X=[1,1,2,2]

Y=[3,4,4,3]

Z=[1,100,1,1]

#

fig=plt.figure()

#Axes3Dfigure

ax=Axes3D(fig)

ax.plot_trisurf(X,Y,Z)

plt.show()






相关文章
|
4月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
4月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
73 1
|
1月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
80 8
|
4月前
|
存储 数据可视化 数据挖掘
揭秘!Matplotlib与Seaborn联手,如何让Python数据分析结果一目了然,惊艳全场?
在数据驱动时代,高效直观地展示分析结果至关重要。Python中的Matplotlib与Seaborn是两大可视化工具,结合使用可生成美观且具洞察力的图表。本文通过分析某电商平台的商品销量数据集,展示了如何利用这两个库揭示商品类别与月份间的销售关系及价格对销量的影响。首先使用Matplotlib绘制月份销量分布直方图,再借助Seaborn的箱线图进一步探索不同类别和价格区间下的销量稳定性。
86 10
|
4月前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
62 2
|
4月前
|
数据可视化 数据挖掘 Python
逆袭之路!Python数据分析新手如何快速掌握Matplotlib、Seaborn,让数据说话更响亮?
在数据驱动时代,掌握数据分析技能至关重要。对于Python新手而言,Matplotlib和Seaborn是数据可视化的两大利器。Matplotlib是最基本的可视化库,适合绘制基础图表;Seaborn则提供高层次接口,专注于统计图形和美观样式。建议先学Matplotlib再过渡到Seaborn。快速上手Matplotlib需多实践,示例代码展示了绘制折线图的方法。Seaborn特色功能包括分布图、关系图及分类数据可视化,并提供多种主题和颜色方案。两者结合可实现复杂数据可视化,先用Seaborn绘制统计图,再用Matplotlib进行细节调整。熟练掌握这两者,将显著提升你的数据分析能力。
61 4
|
4月前
|
数据可视化 数据挖掘 Python
惊呆了!Python数据分析师如何用Matplotlib、Seaborn秒变数据可视化大师?
在数据驱动时代,分析师们像侦探一样在数字海洋中寻找线索,揭示隐藏的故事。数据可视化则是他们的“魔法棒”,将复杂数据转化为直观图形。本文将带你探索Python数据分析师如何利用Matplotlib与Seaborn这两大神器,成为数据可视化大师。Matplotlib提供基础绘图功能,而Seaborn在此基础上增强了统计图表的绘制能力,两者结合使数据呈现更高效、美观。无论是折线图还是箱形图,这两个库都能助你一臂之力。
54 4
|
4月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
【9月更文挑战第2天】数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
76 5
|
5月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析的新手指南深入浅出操作系统:从理论到代码实践
【8月更文挑战第30天】在数据驱动的世界中,掌握数据分析技能变得越来越重要。本文将引导你通过Python这门强大的编程语言来探索数据分析的世界。我们将从安装必要的软件包开始,逐步学习如何导入和清洗数据,以及如何使用Pandas库进行数据操作。文章最后会介绍如何使用Matplotlib和Seaborn库来绘制数据图表,帮助你以视觉方式理解数据。无论你是编程新手还是有经验的开发者,这篇文章都将为你打开数据分析的大门。
|
5月前
|
数据可视化 数据挖掘 API
Python数据分析:数据可视化(Matplotlib、Seaborn)
数据可视化是数据分析中不可或缺的一部分,通过将数据以图形的方式展示出来,可以更直观地理解数据的分布和趋势。在Python中,Matplotlib和Seaborn是两个非常流行和强大的数据可视化库。本文将详细介绍这两个库的使用方法,并附上一个综合详细的例子。

热门文章

最新文章