【算法合集】学习算法第一天(链表篇)

简介: 哈喽,大家好,我是程序猿追,众所周知算法是比较复杂又基础的学科,每个学编程的人都会学习大量的算法。无论在我们面试还是笔试算法是必不可少的,我们打开某招聘网站,发现薪资待遇都很友好。


目录

🍟前言

🍟反转链表

🍔题解代码

🍟链表区间反转

🍔题解代码

🍟链表的奇偶重排

🍔题解代码

🍟链表中的节点每k个一组翻转

🍔题解代码

前言

      哈喽,大家好,我是程序猿追,众所周知算法是比较复杂又基础的学科,每个学编程的人都会学习大量的算法。无论在我们面试还是笔试算法是必不可少的,我们打开某招聘网站,发现薪资待遇都很友好。

image.gif

再看看某大厂的面试题

image.gif

无论是找工作,还是打比赛,搞科研,算法占据了主要地位,我们来看看吧。

反转链表

🎀描述

给定一个单链表的头结点pHead(该头节点是有值的,比如在下图,它的val是1),长度为n,反转该链表后,返回新链表的表头。

数据范围: 0 ≤ n ≤ 1000

要求:空间复杂度 O(1),时间复杂度 O(n)。

如当输入链表{1,2,3}时,

经反转后,原链表变为{3,2,1},所以对应的输出为{3,2,1}。

以上转换过程如下图所示:

image.gif编辑

🎀示例1

输入:{1,2,3}

返回值:{3,2,1}

🎀示例2

输入:{}

返回值:{}

说明:空链表则输出空

题解代码

public class Solution {
    public ListNode ReverseList(ListNode head) {
        //处理空链表 fast-template
        if (head == null)
            return null;
        ListNode cur = head;
        ListNode pre = null;
        while (cur != null) {
            //断开链表,要记录后续一个
            ListNode temp = cur.next;
            //当前的next指向前一个
            cur.next = pre;
            //前一个更新为当前
            pre = cur;
            //当前更新为刚刚记录的后一个
            cur = temp;
        }
        return pre;}
}

image.gif

链表内指定区间反转

💎描述

将一个节点数为 size 链表 m 位置到 n 位置之间的区间反转,要求时间复杂度 O(n),空间复杂度 O(1)O(1)。

例如:

给出的链表为 NULL1→2→3→4→5→NULL, m=2,n=4m=2,n=4,

返回  NULL1→4→3→2→5→NULL.

 

数据范围: 链表长度 0 < size ≤ 1000,0 < size0 < m ≤ n ≤ size,链表中每个节点的值满足 ∣val∣≤1000

要求:时间复杂度 O(n) ,空间复杂度 O(n)

进阶:时间复杂度 O(n),空间复杂度 O(1)

💎示例1

输入:{1,2,3,4,5},2,4

返回值:{1,4,3,2,5}

💎示例2

输入:{5},1,1

返回值:{5}

题解代码

import java.util.*;
public class Solution {
    public ListNode reverseBetween (ListNode head, int m, int n) {
        //加个表头 fast-template
        ListNode res = new ListNode(-1);
        res.next = head;
        //前序节点
        ListNode pre = res;
        //当前节点
        ListNode cur = head;
        //找到m
        for (int i = 1; i < m; i++) {
            pre = cur;
            cur = cur.next;
        }
        //从m反转到n
        for (int i = m; i < n; i++) {
            ListNode temp = cur.next;
            cur.next = temp.next;
            temp.next = pre.next;
            pre.next = temp;
        }
        //返回去掉表头
        return res.next;}
}

image.gif

链表的奇偶重排

💕描述

给定一个单链表,请设定一个函数,将链表的奇数位节点和偶数位节点分别放在一起,重排后输出。

注意是节点的编号而非节点的数值。

数据范围:节点数量满足 0 ≤ n ≤ 10^5,节点中的值都满足 0 ≤ val ≤ 1000

要求:空间复杂度 O(n),时间复杂度 O(n)

💕示例1

输入:{1,2,3,4,5,6}

返回值:{1,3,5,2,4,6}

💕说明:

1->2->3->4->5->6->NULL

重排后为

1->3->5->2->4->6->NULL

💕示例2

输入:{1,4,6,3,7}

返回值:{1,6,7,4,3}

💕说明:

1->4->6->3->7->NULL

重排后为

1->6->7->4->3->NULL

奇数位节点有1,6,7,偶数位节点有4,3。重排后为1,6,7,4,3

💕备注:

链表长度不大于200000。每个数范围均在int内。

题解代码

import java.util.*;
public class Solution {
    public ListNode oddEvenList (ListNode head) { 
        //如果链表为空,不用重排 fast-template
        if(head == null)
            return head;
        //even开头指向第二个节点,可能为空
        ListNode even = head.next;
        //odd开头指向第一个节点
        ListNode odd = head;
        //指向even开头
        ListNode evenhead = even;
        while(even != null && even.next != null){
            //odd连接even的后一个,即奇数位
            odd.next = even.next;
            //odd进入后一个奇数位
            odd = odd.next;
            //even连接后一个奇数的后一位,即偶数位
            even.next = odd.next;
            //even进入后一个偶数位
            even = even.next;
        }
        //even整体接在odd后面
        odd.next = evenhead;
        return head;}
}

image.gif

链表中的节点每k个一组翻转

🎉描述

将给出的链表中的节点每 k 个一组翻转,返回翻转后的链表

如果链表中的节点数不是 k 的倍数,将最后剩下的节点保持原样

你不能更改节点中的值,只能更改节点本身。

数据范围: 0 ≤ n ≤ 2000 , 1 ≤ k ≤ 2000 ,链表中每个元素都满足 0 ≤ val ≤ 1000

要求空间复杂度 O(1),时间复杂度 O(n)

🎉例如:

给定的链表是 1→2→3→4→5

对于 k = 2, 你应该返回 2→1→4→3→5

对于 k = 3, 你应该返回 3→2→1→4→5

🎉示例1

输入:{1,2,3,4,5},2

返回值:{2,1,4,3,5}

🎉示例2

输入:{},1

复制返回值:{}

import java.util.*;
public class Solution {
    public ListNode reverseKGroup (ListNode head, int k) {
         //找到每次翻转的尾部 fast-template
        ListNode tail = head;
        //遍历k次到尾部
        for (int i = 0; i < k; i++) {
            //如果不足k到了链表尾,直接返回,不翻转
            if (tail == null)
                return head;
            tail = tail.next;
        }
        //翻转时需要的前序和当前节点
        ListNode pre = null;
        ListNode cur = head;
       //在到达当前段尾节点前
        while (cur != tail) {
            //翻转
            ListNode temp = cur.next;
            cur.next = pre;
            pre = cur;
            cur = temp;
        }
       //当前尾指向下一段要翻转的链表
        head.next = reverseKGroup(tail, k);
        return pre;}
}

image.gif

不积跬步无以至千里,趁年轻,使劲拼,给未来的自己一个交代!向着明天更好的自己前进吧!

image.gif


相关文章
|
1月前
|
机器学习/深度学习 人工智能 资源调度
【博士每天一篇文献-算法】连续学习算法之HAT: Overcoming catastrophic forgetting with hard attention to the task
本文介绍了一种名为Hard Attention to the Task (HAT)的连续学习算法,通过学习几乎二值的注意力向量来克服灾难性遗忘问题,同时不影响当前任务的学习,并通过实验验证了其在减少遗忘方面的有效性。
42 12
|
1月前
|
算法 Java
掌握算法学习之字符串经典用法
文章总结了字符串在算法领域的经典用法,特别是通过双指针法来实现字符串的反转操作,并提供了LeetCode上相关题目的Java代码实现,强调了掌握这些技巧对于提升算法思维的重要性。
|
1月前
|
算法 NoSQL 中间件
go语言后端开发学习(六) ——基于雪花算法生成用户ID
本文介绍了分布式ID生成中的Snowflake(雪花)算法。为解决用户ID安全性与唯一性问题,Snowflake算法生成的ID具备全局唯一性、递增性、高可用性和高性能性等特点。64位ID由符号位(固定为0)、41位时间戳、10位标识位(含数据中心与机器ID)及12位序列号组成。面对ID重复风险,可通过预分配、动态或统一分配标识位解决。Go语言实现示例展示了如何使用第三方包`sonyflake`生成ID,确保不同节点产生的ID始终唯一。
go语言后端开发学习(六) ——基于雪花算法生成用户ID
|
1月前
|
算法
【算法】合并两个有序链表(easy)——递归算法
【算法】合并两个有序链表(easy)——递归算法
【算法】合并两个有序链表(easy)——递归算法
|
1月前
|
存储 机器学习/深度学习 算法
【博士每天一篇文献-算法】连续学习算法之HNet:Continual learning with hypernetworks
本文提出了一种基于任务条件超网络(Hypernetworks)的持续学习模型,通过超网络生成目标网络权重并结合正则化技术减少灾难性遗忘,实现有效的任务顺序学习与长期记忆保持。
30 4
|
1月前
|
存储 机器学习/深度学习 算法
【博士每天一篇文献-算法】连续学习算法之RWalk:Riemannian Walk for Incremental Learning Understanding
RWalk算法是一种增量学习框架,通过结合EWC++和修改版的Path Integral算法,并采用不同的采样策略存储先前任务的代表性子集,以量化和平衡遗忘和固执,实现在学习新任务的同时保留旧任务的知识。
68 3
|
1月前
|
存储 机器学习/深度学习 算法
【博士每天一篇文献-综述】基于脑启发的连续学习算法有哪些?附思维导图
这篇博客文章总结了连续学习的分类,包括经典方法(重放、正则化和稀疏化方法)和脑启发方法(突触启发、双系统启发、睡眠启发和模块化启发方法),并讨论了它们在解决灾难性遗忘问题上的优势和局限性。
24 2
|
1月前
|
算法
【数据结构与算法】共享双向链表
【数据结构与算法】共享双向链表
11 0
|
1月前
|
算法
【数据结构与算法】双向链表
【数据结构与算法】双向链表
10 0
|
1月前
|
算法
【数据结构与算法】循环链表
【数据结构与算法】循环链表
12 0