八个常见的机器学习算法的计算复杂度总结

简介: 计算的复杂度是一个特定算法在运行时所消耗的计算资源(时间和空间)的度量。

计算的复杂度是一个特定算法在运行时所消耗的计算资源(时间和空间)的度量。
6745bd325860bff74f5951085a6b5355f7f218.png

计算复杂度又分为两类:

1、时间复杂度
时间复杂度不是测量一个算法或一段代码在某个机器或者条件下运行所花费的时间。时间复杂度一般指时间复杂性,时间复杂度是一个函数,它定性描述该算法的运行时间,允许我们在不运行它们的情况下比较不同的算法。例如,带有O(n)的算法总是比O(n²)表现得更好,因为它的增长率小于O(n²)。
2、空间复杂度
就像时间复杂度是一个函数一样,空间复杂度也是如此。 从概念上讲,它与时间复杂度相同,只需将时间替换为空间即可。 维基百科将空间复杂度定义为:

算法或计算机程序的空间复杂度是解决计算问题实例所需的存储空间量,以特征数量作为输入的函数。

下面我们整理了一些常见的机器学习算法的计算复杂度。

1、线性回归
n= 训练样本数,f = 特征数
训练时间复杂度:O(f²n+f³)
预测时间复杂度:O(f)
运行时空间复杂度:O(f)
2、逻辑回归:
n= 训练样本数,f = 特征数
训练时间复杂度:O(f*n)
预测时间复杂度:O(f)
运行时空间复杂度:O(f)
3、支持向量机:
n= 训练样本数,f = 特征数,s= 支持向量的数量
训练时间复杂度:O(n²) 到 O(n³),训练时间复杂度因内核不同而不同。
预测时间复杂度:O(f) 到 O(sf):线性核是 O(f),RBF 和多项式是 O(sf)
运行时空间复杂度:O(s)
4、朴素贝叶斯:
n= 训练样本数,f = 特征数,c = 分类的类别数
训练时间复杂度:O(nfc)
预测时间复杂度:O(c*f)
运行时空间复杂度:O(c*f)
5、决策树:
n= 训练样本数,f = 特征数,d = 树的深度,p = 节点数
训练时间复杂度:O(nlog(n)f)
预测时间复杂度:O(d)
运行时空间复杂度:O(p)
6、随机森林:
n= 训练样本数,f = 特征数,k = 树的数量,p=树中的节点数,d = 树的深度
训练时间复杂度:O(nlog(n)f*k)
预测时间复杂度:O(d*k)
运行时空间复杂度:O(p*k)
7、K近邻:
n= 训练样本数,f = 特征数,k= 近邻数

Brute:
训练时间复杂度:O(1)
预测时间复杂度:O(nf+kf)
运行时空间复杂度:O(n*f)
kd-tree:
训练时间复杂度:O(fnlog(n))
预测时间复杂度:O(k*log(n))
运行时空间复杂度:O(n*f)
8、K-means 聚类:
n= 训练样本数,f = 特征数,k= 簇数,i = 迭代次数
训练时间复杂度:O(nfk*i)
运行时空间复杂度:O(nf+kf)

相关文章
|
17天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
55 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
2月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
63 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
2月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
2月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
69 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
27天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
2月前
|
移动开发 算法 前端开发
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
26 0
|
2月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
35 0
|
2月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能