数据结构 —— 线索二叉树

简介: 数据结构 —— 线索二叉树


线索二叉树的意义

  • 对于一个有n个节点的二叉树,每个节点有指向左右孩子的指针域。其中会出现n+ 1个空指针域,这些空间不储存任何事物,浪费着内存的资源。
  • 对于一些需要频繁进行二叉树遍历操作的场合,二叉树的非递归遍历操作过程相对比较复杂,递归遍历虽然简单明了,但是会有额外的开销,对于操作的时间和空间都比较浪费。
  • 我们可以考虑利用这些空地址,存放指向节点在某种遍历次序下的前驱和后继节点的地址。通过这些前驱和后继节点的地址可以知道,从当前位置下一步应该走向哪里。

线索二叉树的定义

  • 指向前驱和后继的指针称为线索,加上线索的二叉链表称为线索链表,相应的二叉树就称为线索二叉树。
  • 对二叉树以某种次序遍历使其变为线索二叉树的过程称为线索化。

线索二叉树结构的实现

二叉树的线索存储结构

为了区分二叉树某一节点是指向它的孩子节点还是指向前驱或者后继节点,我们可以在每个节点增设两个标志,Ltag,Rtag.

其中:

  • Ltag为0时,代表该节点指向它的左孩子,Ltag为1时,代表该节点指向它的前驱节点。
  • Rtag为0时,代表该节点指向它的右孩子,Rtag为1时,代表该节点指向它的后继节点。
    所以,线索二叉树结构定义代码如下:
typedef char BTDataType;
typedef enum{Link,Thread}PointerTag;//Link 是0,Thread 是1。
typedef struct BinaryTreeNode
{
  struct BinaryTreeNode* left;
  struct BinaryTreeNode* right;
  PointerTag LTag ;
  PointerTag RTag;
  BTDataType data;
}BTNode;

二叉树的中序线索化

线索化的过程就是在遍历过程中修改空指针的过程

以上二叉树中序遍历可以得到:

D B E A F C
  D的前驱是空,后继是B
  B的前驱是D,后继是E
  E的前驱是B,后继是A
  F的前驱是A,后继是C
  C的前驱是F,后继是空

线索化后:

中序遍历线索化的递归函数代码如下:

//中序线索化
BTNode* pre = NULL;/*全局变量,始终指向刚刚访问过的节点*/
void InThreading(BTNode* p)
{
  if (p == NULL) return;
  InThreading(p->left);//递归左子树线索化
  if (!p->left)//左孩子为空,left指针指向前驱
  {
    p->LTag = Thread;
    p->left = pre;
  }
  if (pre!=NULL && !pre->right)//右孩子为空,right指针指向后继指针。
  //这里判断 pre!=NULL 是因为线索化中序遍历的第一个节点(节点D)时,它并没有前驱节点,此时的pre仍然是NULL。
  {
    pre->RTag = Thread;
    pre->right = p;
  }
  pre = p;//保持pre指向p的前驱
  InThreading(p->right);
} 

分析:

  1. if (!p->left)表示如果某节点的左指针域为空,因为其前驱节点刚刚访问过,并且赋值给了pre,所以可以将pre赋值给 l -> left,并且修改 p-> LTag = Thread,以完成前驱节点的线索化。
  2. pre 是 p 的前驱,那么, p 就是 pre 的后继。当pre -> right 为空时,就可以将p赋值给 pre -> right , 并且修改 pre -> RTag = Thread。

线索二叉树的中序遍历

void MidOrder(BTNode*p)
{
  while (p != NULL)
  {
    while (p->LTag == Link)//
    {
      p = p->left;
    }
    printf("%c ",p->data);
    while (p->RTag == Thread && p->right != p)
    {
      p = p->right;
      printf("%c ", p->data);
    }
    p = p->right;
  }
  return;
}

分析:

  1. while (T->ltag == Link)从根节点开始遍历,如果左标记是Link让它一直循环下去,
    直到找到标记为Thread的的结点,也就是要遍历的第一个结点,然后根据后驱指针找到后继结点
  2. 后面就是重复以上过程,直到遍历完整个二叉数。

总结

如果所用的二叉数需要经常遍历或查找结点时需要某种遍历序列中的前驱和后继,那么采用线索二叉数是一个很好的选择;

以上内容参考于《大话数据结构》。


相关文章
|
14天前
|
存储 机器学习/深度学习
【数据结构】二叉树全攻略,从实现到应用详解
本文介绍了树形结构及其重要类型——二叉树。树由若干节点组成,具有层次关系。二叉树每个节点最多有两个子树,分为左子树和右子树。文中详细描述了二叉树的不同类型,如完全二叉树、满二叉树、平衡二叉树及搜索二叉树,并阐述了二叉树的基本性质与存储方式。此外,还介绍了二叉树的实现方法,包括节点定义、遍历方式(前序、中序、后序、层序遍历),并提供了多个示例代码,帮助理解二叉树的基本操作。
38 13
【数据结构】二叉树全攻略,从实现到应用详解
|
3月前
|
存储 算法
【数据结构和算法】--- 二叉树(4)--二叉树链式结构的实现(2)
【数据结构和算法】--- 二叉树(4)--二叉树链式结构的实现(2)
27 0
|
11天前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
11天前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
11天前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
1月前
|
存储
【初阶数据结构篇】二叉树基础概念
有⼀个特殊的结点,称为根结点,根结点没有前驱结点。
|
1月前
|
存储 Linux Windows
【数据结构】二叉树
【数据结构】二叉树
|
1月前
|
存储 算法 Linux
【数据结构】树、二叉树与堆(长期维护)(1)
【数据结构】树、二叉树与堆(长期维护)(1)
|
1月前
|
算法
【数据结构】树、二叉树与堆(长期维护)(2)
【数据结构】树、二叉树与堆(长期维护)(2)
【数据结构】树、二叉树与堆(长期维护)(2)
|
1月前
|
算法 Java
数据结构二叉树
这篇文章讨论了数据结构中的二叉树,并提供了一个二叉树中序遍历的算法示例,包括给定二叉树的根节点返回中序遍历结果的Java代码实现。
数据结构二叉树